KL散度超详细讲解

KL散度定义

KL(Kullback-Leibler divergence)散度多应用于概率论或信息论中,又可称相对熵(relative entropy)。它是用来描述两个概率分布P和Q的差异的一种方法
【记】KL具有非对称性,即D(P||Q) ≠ D(Q||P)
在信息论中,D(P||Q) 表示用概率分布Q来拟合真实分布P时,产生的信息损耗,其中P表示真实分布,Q表示P的拟合分布

KL散度公式定义

对于离散型随机变量有:
在这里插入图片描述
对于连续型随机变量有:
在这里插入图片描述

KL散度的物理定义

信息论中,它是用来度量使用基于Q分布的编码来编码来自P分布的样本平均所需的额外的比特(bit)个数
机器学习领域,是用来度量两个函数的相似程度或者相近程度
在信息论中,用基于P的编码去编码来自P的样本,其最优编码平均所需要的比特个数(即这个字符集的熵)为:
在这里插入图片描述
用基于P的编码去编码来自Q的样本,则所需要的比特个数变为:
在这里插入图片描述
【注】P(x)为各字符出现的频率,log( 1 P ( x ) \frac{1}{P(x)} P(x)1)为该字符相应的编码长度,log( 1 Q ( x ) \frac{1}{Q(x)} Q(x)1)为对应于Q的分布各字符编码长度。
那么KL散度即可表示为如下:
在这里插入图片描述

简要介绍Jensen不等式

在这里插入图片描述

利用Jensen不等式证明P与Q之间的KL散度不小于0:
在这里插入图片描述

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值