KL散度超详细讲解

KL散度定义

KL(Kullback-Leibler divergence)散度多应用于概率论或信息论中,又可称相对熵(relative entropy)。它是用来描述两个概率分布P和Q的差异的一种方法
【记】KL具有非对称性,即D(P||Q) ≠ D(Q||P)
在信息论中,D(P||Q) 表示用概率分布Q来拟合真实分布P时,产生的信息损耗,其中P表示真实分布,Q表示P的拟合分布

KL散度公式定义

对于离散型随机变量有:
在这里插入图片描述
对于连续型随机变量有:
在这里插入图片描述

KL散度的物理定义

信息论中,它是用来度量使用基于Q分布的编码来编码来自P分布的样本平均所需的额外的比特(bit)个数
机器学习领域,是用来度量两个函数的相似程度或者相近程度
在信息论中,用基于P的编码去编码来自P的样本,其最优编码平均所需要的比特个数(即这个字符集的熵)为:
在这里插入图片描述
用基于P的编码去编码来自Q的样本,则所需要的比特个数变为:
在这里插入图片描述
【注】P(x)为各字符出现的频率,log( 1 P ( x ) \frac{1}{P(x)} P(x)1)为该字符相应的编码长度,log( 1 Q ( x ) \frac{1}{Q(x)} Q(x)1)为对应于Q的分布各字符编码长度。
那么KL散度即可表示为如下:
在这里插入图片描述

简要介绍Jensen不等式

在这里插入图片描述

利用Jensen不等式证明P与Q之间的KL散度不小于0:
在这里插入图片描述

PCA(Principal Component Analysis)是一种经典的降维方法,在机器学习中被广泛应用。其原理是通过线性变换将高维特征空间的数据映射到低维特征空间,并且保留尽可能多的数据方差。PCA通过计算协方差矩阵的特征值和特征向量,得到各个主成分(即特征向量),然后根据选择的主成分个数进行特征投影,实现数据降维。 KPCA(Kernel Principal Component Analysis)是PCA的一种非线性扩展方法。KPCA使用核技巧,将数据映射到高维特征空间,在高维空间中进行PCA操作。通过使用核函数计算内积,可以将非线性问题转化为线性问题。KPCA通过计算核矩阵的特征值和特征向量,得到非线性空间中的主成分,并将数据投影到主成分上进行降维处理。 t-SNE(t-Distributed Stochastic Neighbor Embedding)是一种数据可视化和降维技术,主要用于发现数据的结构和聚类。t-SNE通过考虑相似度的概率分布来映射高维数据到二维或三维空间,保留数据之间的相对距离。t-SNE通过计算高维数据和低维映射数据间的相似度,利用梯度下降方法最小化两者之间的KL散度,从而得到低维空间中的数据表示。 总结来说,PCA和KPCA是机器学习中常用的降维方法,可以通过线性或非线性映射将高维数据降低到低维空间。而t-SNE主要用于数据可视化和聚类,能够保留数据之间的相对距离关系。这些方法都在机器学习中起到了重要的作用,帮助我们处理高维数据和理解数据的结构。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值