- 博客(11)
- 收藏
- 关注
转载 NLP - word2vec原理(一) CBOW与Skip-Gram模型基础
1. CBOW与Skip-Gram用于神经网络语言模型 在word2vec出现之前,已经有用神经网络DNN来用训练词向量进而处理词与词之间的关系了。采用的方法一般是一个三层的神经网络结构(当然也可以多层),分为输入层,隐藏层和输出层(softmax层)。 这个模型是如何定义数据的输入和输出呢?一般分为CBOW(Continuous Bag-of-Words 与Skip-Gram两种模型。
2018-01-21 10:30:48
3900
原创 最长公共子序列问题(LCS)
最长公共子序列问题(LCS)代码块#include<iostream> #include<cstring> #define MAX 1000 using namespace std; int c[MAX][MAX]; int dp(int m, int n, char* x, char* y) { for(int j=0; j<=n; j++) c[0][j] = 0;
2017-10-27 21:08:16
200
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人