tensorflow使用——(三)网络的简单搭建

一、数据加载

1、加载的三种方式

  • Preloaded data: 预加载数据
  • Feeding: Python产生数据,再把数据喂给后端
  • Reading from file: 从文件中直接读取

2、预加载数据

预加载数据的读取方式是直接读取定义好的数据,直接嵌入至Graph,然后将Graph传入Session中运行。当数据量比较大时,Graph的传输会遇到效率问题。

Import tensorflow as tf
 # 设计Graph
 x1 = tf.constant([2,3,4])
 x2 = tf.constant([4,0,1])
 y = tf.add(x1,x2) 
 # 打开一个session,计算y
 with tf.Session() as sess:
    print(sess.run(y))

3、Feeding

Feeding方式加载数据时,是事先不知道传进来的数据是什么,只需要先用tf.placeholder方法定义好准备放入的数据的类型等特征。然后同预加载数据比较,在打开一个session后将具体的数据比如这里的li1,li2喂给我们提前用tf.placeholder定义好的位置x1,x2占位符。这样x1,x2这时候就会被传入li1,li2用于进行计算了。用占位符代替数据,待运行的时候填充数据。

import tensorflow as tf
# 设计Graph
x1 = tf.placeholder(tf.int16)
x2 = tf.placeholder(tf.int16)
y = tf.add(x1, x2)
# 用Python产生数据
li1 = [2, 3, 4]
li2 = [4, 0, 1]
with tf.Session() as sess:
   print sess.run(y, feed_dict={x1: li1, x2: li2})

4、Reading from file方式载入数据

Reading from file方式通过将读取数据和计算这两个过程分别放入两个线程中来解决CPU在读取数据时处于闲置状态而导致的低效率问题。 读取线程将文件系统中的数据陆续读入进内存的队列中,而另外计算是另外一个线程。这样这两个线程同时工作,就能保证CPU一直在计算,而不会因为IO阶段而闲置的问题。

$ echo -e "Alpha1,A1\nAlpha2,A2\nAlpha3,A3" > A.csv
$ echo -e "Bee1,B1\nBee2,B2\nBee3,B3" > B.csv
$ echo -e "Sea1,C1\nSea2,C2\nSea3,C3" > C.csv
#单个Reader,单个样本
#-*- coding:utf-8 -*-
import tensorflow as tf
# 生成一个先入先出队列和一个QueueRunner,生成文件名队列
filenames = ['A.csv', 'B.csv', 'C.csv']
filename_queue = tf.train.string_input_producer(filenames, shuffle=False)
# 定义Reader
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
# 定义Decoder
example, label = tf.decode_csv(value, record_defaults=[['null'], ['null']])
#example_batch, label_batch = tf.train.shuffle_batch([example,label], 
#batch_size=1, capacity=200, min_after_dequeue=100, num_threads=2)

# 运行Graph
with tf.Session() as sess:
    #创建一个协调器,管理线程
    coord = tf.train.Coordinator()
    #启动QueueRunner, 此时文件名队列已经进队。
    threads = tf.train.start_queue_runners(coord=coord)  
    
    for i in range(10):
        print example.eval(),label.eval()
coord.request_stop()
coord.join(threads)

二、运行TensorFlow的InteractiveSession 

使用更加方便的InteractiveSession类。通过它,你可以更加灵活地构建你的代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。如果你没有使用InteractiveSession,那么你需要在启动session之前构建整个计算图,然后启动该计算图。

import tensorflow as tf
sess = tf.InteractiveSession()

三、占位符 

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

四、权重初始化

为了创建这个模型,我们需要创建大量的权重和偏置项。这个模型中的权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度。由于我们使用的是ReLU神经元,因此比较好的做法是用一个较小的正数来初始化偏置项,以避免神经元节点输出恒为0的问题 

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
 
def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

五、初始层结构

def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
 
def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

六、网络框架-输入

我们把x变成一个4d向量,其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(因为是灰度图所以这里的通道数为1,如果是rgb彩色图,则为3)。

x_image = tf.reshape(x, [-1,28,28,1])

七、网络框架-卷积部分 

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

八、网络框架-全连接

加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
 
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

九、Dropout

为了减少过拟合,我们在输出层之前加入dropout。我们用一个placeholder来代表一个神经元的输出在dropout中保持不变的概率。这样我们可以在训练过程中启用dropout,在测试过程中关闭dropout。TensorFlow的tf.nn.dropout操作除了可以屏蔽神经元的输出外,还会自动处理神经元输出值的scale。所以用dropout的时候可以不用考虑scale。

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

十、softmax

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
 
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

十一、训练和评估模型

为了进行训练和评估,我们使用与之前简单的单层SoftMax神经网络模型几乎相同的一套代码,只是我们会用更加复杂的ADAM优化器来做梯度最速下降,在feed_dict中加入额外的参数keep_prob来控制dropout比例。然后每100次迭代输出一次日志。

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print "step %d, training accuracy %g"%(i, train_accuracy)
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
 
print "test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值