【pytorch】1.2 tensor 创建

由 list 生成 Tensor

a = torch.tensor([1., 2, 3, 4, 5])
b = torch.tensor([[1, 2, 3], [4, 5, 6]])

由 ndarray 生成 tensor

c = np.arange(1, 5)
d = torch.from_numpy(c)
print(c, type(c))     # [1 2 3 4] <class 'numpy.ndarray'>
print(d, type(d))     # tensor([1, 2, 3, 4]) <class 'torch.Tensor'>

生成一个单位矩阵

a = torch.eye(3, 3)
print(a)
# tensor([[1., 0., 0.],
#         [0., 1., 0.],
#         [0., 0., 1.]])

生成全是0的矩阵

b = torch.zeros(2, 3)
print(b)
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])

生成全是1的矩阵

c = torch.ones(3, 2)
print(c)
# tensor([[1., 1.],
#         [1., 1.],
#         [1., 1.]])

从1到10,均匀切分成4份

d = torch.linspace(1, 10, 4)
print(d)
# tensor([ 1.,  4.,  7., 10.])

生成满足均匀分布随机数

e = torch.rand(2, 3)
print(e)
# tensor([[0.3096, 0.8734, 0.0763],
#         [0.3694, 0.0324, 0.0278]])

生成满足标准分布随机数,数值范围为 0~1

f = torch.randn(2, 3)
print(f)
# tensor([[ 1.4131, -0.8185, -0.4714],
#         [ 0.4335, -0.5326,  1.0282]])

返回所给数据形状相同,值全为0的张量

g = torch.zeros_like(torch.rand(2, 3))
print(g)
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Enzo 想砸电脑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值