竞赛入门-数据探索性分析(EDA)

总览

在这里插入图片描述
在这里插入图片描述

数据科学库

Numpy

Numpy(Numerical Python)
Numpy:提供了一个在Python中做科学计算的基础库,重在数值计算,主要用于多为数据(矩阵)处理的库。用来存储和处理大型矩阵,比python自身的嵌套列表结构要高效得多。Python其余的科学计算扩展大部分都是以此为基础。

  1. 高性能科学计算和数据分析的基础包
  2. ndarry,多维数组(矩阵),具有矢量运算能力,快速,节省空间。
  3. 矩阵运算,无需循环,可完成类似Matlab中的矢量运算
  4. 线性代数,随即数生成
  5. import numpy as np

Scipy

Scipy
Scipy:基于Numpy提供了一个在Python中做科学计算的工具包。主要应用于统计,优化,整合,线性代数模块,傅利叶变换,信号和图像处理,常微分方程求解,稀疏矩阵等,在数学系或工程系相对用的多一些,和数据处理关系不大。
6. 在Nump库的基础上增加了众多的数学,科学及工程常用的库函数
7. 线性代数,常微分方程求解,信号处理,图像处理
8. 一般的数据处理numpy已经够用
9. import scipy as sp

Pandas

Pandas
Pandas:Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

可视化库

matplotlib

matplotlib
matplotlib:是一个python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形

import matplotlib as mpl
import matplotlib.pyplot as plt

seaborn

seaborn
seaborn:是在matplotlit的基础上进行了更高级的API封装,从而使得做图更加容易,在大多数情况下使用seaborn就能制作出很具有吸引力的图,而是用matplotlib就能制作具有更多特色的图。应该把seaborn视为matplotlib的补充,而不是替代物

missingno库

missingo
missingo:是一个可视化缺失值库,方便使用,我们可以用pip install minssingno 下载安装。

import seaborn as sns

导入基础库代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno

载入数据

pd.read_csv():载入数据方法

Train_data = pd.read_csv('train.csv', sep=' ')

head():查看数据前5行方法
taill():查看数据后5行方法

Train_data.head().append(Train_data.tail())

shape:查看矩阵形状,如几行几列

Train_data.shape

要养成看数据集的head()以及shape的习惯,这会让你每一步更放心,导致接下里的连串的错误, 如果对自己的
pandas等操作不放心,建议执行一步看一下,这样会有效的方便你进行理解函数并进行操作。

数据总揽

describe():describe种有每列的统计量,个数count、平均值mean、方差std、最小值min、中位数25% 50% 75% 、以及最大值 看这个信息主要是瞬间掌握数据的大概的范围以及每个值的异常值的判断,比如有的时候会发现999 9999 -1 等值这些其实都是nan的另外一种表达方式,有的时候需要注意下

info():通过info来了解数据每列的type,有助于了解是否存在除了nan以外的特殊符号异常

Train_data.describe()
Train_data.info()

数据检测

缺失值检测

isnull():Pandas中判断缺失值得方法,返回布尔值,缺失返回True,不缺失返回False
sum():加和函数

Train_data.isnull().sum()

plt.bar():matplotlit库中是使用条形图方法

# nan可视化
missing = Train_data.isnull().sum()
missing = missing[missing > 0]
missing.sort_values(inplace=True)
missing.plot.bar()

通过以上两句可以很直观的了解哪些列存在 “nan”, 并可以把nan的个数打印,主要的目的在于 nan存在的个数是否真的很大,如果很小一般选择填充,如果使用lgb等树模型可以直接空缺,让树自己去优化,但如果nan存在的过多、可以考虑删掉。

matrix():可视化查看缺失值方法,missingno库中函数。

msno.matrix(Train_data.sample(250))

bar():missingno库中函数,调用条形图的方法

msno.bar(Train_data.sample(1000))

异常值检测

数据集中存在缺失值的的形式有很多,例如 “空值”,“-”等,或其他形式。
value_count():统计值类型的函数,也可以通过此函数查看数据是否倾斜

Train_data['notRepairedDamage'].value_counts()

因为很多模型对nan有直接的处理,这里我们先不做处理,先替换成nan.
replace():替换值方法

Train_data['notRepairedDamage'].replace('-', np.nan, inplace=True)

特征严重倾斜的类别,一般不会对预测有什么帮助,故这边先删掉,当然你也可以继续挖掘,但是一般意义不大。

del:删除函数

del Train_data["seller"]
del Train_data["offerType"]
del Test_data["seller"]
del Test_data["offerType"]

数据分布

总体分布情况

查看某特征的数值

Train_data['price']

某个特征的数值统计查询

Train_data['price'].value_counts()

约翰逊分布:经约翰逊变换后服从正态分布的随机变量的概率分布

总体分布概况

## 1) 总体分布概况(无界约翰逊分布等)
import scipy.stats as st
y = Train_data['price']
plt.figure(1); plt.title('Johnson SU')
sns.distplot(y, kde=False, fit=st.johnsonsu)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)

价格不服从正态分布,所以在进行回归之前,它必须进行转换,虽然对数变换做得很好,但最佳拟合是无界约翰逊分布

skewness 和 kurtosis

skewness(偏态)
正态分布(positive skewness distribution)是指频数分布的高峰偏于左侧,偏态系数为正直的频数分布形态。偏态分布为正偏态和负偏态。当均值大于众数时称为正偏态;当均值小于众数时称为负偏态。
kurtosis(峰度)
表征概率密度分布曲线在平均值处峰值高低的特征数
查看偏态和峰度代码

## 2) 查看skewness and kurtosis
sns.distplot(Train_data['price']);
print("Skewness: %f" % Train_data['price'].skew())
print("Kurtosis: %f" % Train_data['price'].kurt())
Train_data.skew(), Train_data.kurt()
sns.distplot(Train_data.skew(),color='blue',axlabel ='Skewness')
sns.distplot(Train_data.kurt(),color='orange',axlabel ='Kurtness')

预测值分布

## 3) 查看预测值的具体频数
plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()

查看频数, 大于20000得值极少,其实这里也可以把这些当作特殊得值(异常值)直接用填充或者删掉,再前面进行。

# log变换 z之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick
plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar',color ='red') 
plt.show()

数据特征

数据类型

name - 汽车编码
regDate - 汽车注册时间
model - 车型编码
brand - 品牌
bodyType - 车身类型
fuelType - 燃油类型
gearbox - 变速箱
power - 汽车功率
kilometer - 汽车行驶公里
notRepairedDamage - 汽车有尚未修复的损坏
regionCode - 看车地区编码
seller - 销售方 【以删】
offerType - 报价类型 【以删】
creatDate - 广告发布时间
price - 汽车价格
v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’, ‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,‘v_14’(根据汽车的评
论、标签等大量信息得到的embedding向量)【人工构造 匿名特征】

# 分离label即预测值
Y_train = Train_data['price']
# 这个区别方式适用于没有直接label coding的数据
# 这里不适用,需要人为根据实际含义来区分
# 数字特征
# numeric_features = Train_data.select_dtypes(include=[np.number])
# numeric_features.columns
# # 类型特征
# categorical_features = Train_data.select_dtypes(include=[np.object])
# categorical_features.columns
# 特征nunique分布
for cat_fea in categorical_features:
 print(cat_fea + "的特征分布如下:")
 print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
 print(Train_data[cat_fea].value_counts())
# 特征nunique分布
for cat_fea in categorical_features:
 print(cat_fea + "的特征分布如下:")
 print("{}特征有个{}不同的值".format(cat_fea, Test_data[cat_fea].nunique()))
 print(Test_data[cat_fea].value_counts())

数值特征分析

numeric_features.append('price')
numeric_features
Train_data.head()

相关性分析

## 1) 相关性分析
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
print(correlation['price'].sort_values(ascending = False),'\n')
f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True, vmax=0.8)
del price_numeric['price']

查看几个特征得 偏度和峰值

## 2) 查看几个特征得 偏度和峰值
for col in numeric_features:
 print('{:15}'.format(col), 
 'Skewness: {:05.2f}'.format(Train_data[col].skew()) , 
 ' ' ,
 'Kurtosis: {:06.2f}'.format(Train_data[col].kurt()) 
 )

每个数字特征得分布可视化

## 3) 每个数字特征得分布可视化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")

数字特征相互之间的关系可视化

## 4) 数字特征相互之间的关系可视化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5', 'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()
Train_data.columns

此处是多变量之间的关系可视化,可视化更多学习可参考很不错的文章
链接: https://www.jianshu.com/p/6e18d21a4cad .

多变量互相回归关系可视化

## 5) 多变量互相回归关系可视化
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, 
# ['v_12', 'v_8' , 'v_0', 'power', 'v_5', 'v_2', 'v_6', 'v_1', 'v_14']
v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)
v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)
v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)
power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)
v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)
v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)
v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)
v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)
v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)
v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)

类别特征分析

unique分布

## 1) unique分布
for fea in categorical_features:
 print(Train_data[fea].nunique())
categorical_features

类别特征箱形图可视化

## 2) 类别特征箱形图可视化
# 因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下
categorical_features = ['model',
'brand',
'bodyType',
'fuelType',
'gearbox',
'notRepairedDamage']
for c in categorical_features:
 Train_data[c] = Train_data[c].astype('category')
 if Train_data[c].isnull().any():
 Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])
 Train_data[c] = Train_data[c].fillna('MISSING')
def boxplot(x, y, **kwargs):
 sns.boxplot(x=x, y=y)
 x=plt.xticks(rotation=90)
f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(boxplot, "value", "price")
Train_data.columns

类别特征的小提琴图可视化

## 3) 类别特征的小提琴图可视化
catg_list = categorical_features
target = 'price'
for catg in catg_list :
 sns.violinplot(x=catg, y=target, data=Train_data)
 plt.show()
categorical_features = ['model','brand','bodyType','fuelType','gearbox','notRepairedDamage']

类别特征的柱形图可视化

## 4) 类别特征的柱形图可视化
def bar_plot(x, y, **kwargs):
 sns.barplot(x=x, y=y)
 x=plt.xticks(rotation=90)
f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(bar_plot, "value", "price")

类别特征的每个类别频数可视化(count_plot)

## 5) 类别特征的每个类别频数可视化(count_plot)
def count_plot(x, **kwargs):
 sns.countplot(x=x)
 x=plt.xticks(rotation=90)
f = pd.melt(Train_data, value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(count_plot, "value")

用pandas_profiling生成数据报告

用pandas_profiling生成一个较为全面的可视化和数据报告(较为简单、方便) 最终打开html文件即可

import pandas_profiling
pfr = pandas_profiling.ProfileReport(Train_data)
pfr.to_file("./example.html")

经验总结

所给出的EDA步骤为广为普遍的步骤,在实际的不管是工程还是比赛过程中,这只是最开始的一步,也是最基本的一步。
接下来一般要结合模型的效果以及特征工程等来分析数据的实际建模情况,根据自己的一些理解,查阅文献,对实际问题做出判断和深入的理解。
最后不断进行EDA与数据处理和挖掘,来到达更好的数据结构和分布以及较为强势相关的特征。

数据探索在机器学习中我们一般称为EDA(Exploratory Data Analysis):
是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过
作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。
数据探索有利于我们发现数据的一些特性,数据之间的关联性,对于后续的特征构建是很有帮助的。

  1. 对于数据的初步分析(直接查看数据,或.sum(), .mean(),.descirbe()等统计函数)可以从:样本数量,训
    练集数量,是否有时间特征,是否是时许问题,特征所表示的含义(非匿名特征),特征类型(字符类似,
    int,float,time),特征的缺失情况(注意缺失的在数据中的表现形式,有些是空的有些是”NAN”符号
    等),特征的均值方差情况。
  2. 分析记录某些特征值缺失占比30%以上样本的缺失处理,有助于后续的模型验证和调节,分析特征应该是填
    充(填充方式是什么,均值填充,0填充,众数填充等),还是舍去,还是先做样本分类用不同的特征模型
    去预测。
  3. 对于异常值做专门的分析,分析特征异常的label是否为异常值(或者偏离均值较远或者事特殊符号),异常值
    是否应该剔除,还是用正常值填充,是记录异常,还是机器本身异常等。
  4. 对于Label做专门的分析,分析标签的分布情况等。
  5. 进步分析可以通过对特征作图,特征和label联合做图(统计图,离散图),直观了解特征的分布情况,通过
    这一步也可以发现数据之中的一些异常值等,通过箱型图分析一些特征值的偏离情况,对于特征和特征联合
    作图,对于特征和label联合作图,分析其中的一些关联性。

注:此为学习笔记,部分内容取自《Datawhale 数据挖掘学习路径》

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值