深度学习基础推荐书籍
- 《神经网络与深度学习pdf》-邱锡鹏 链接
Pytorch深度学习框架
一定需要学会安装CUDA和安装Pytorch时版本要与CUDA版本匹配
视频资料
经典论文
双阶段训练目标检测模
- Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks 论文
- FPN:Feature Pyramid Networks for Object Detection 论文
- R-FCN:Object Detection via Region based Fully Convolutional Networks 论文
单阶段训练目标检测模型
- YOLOv1:You Only Look Once Unified, Real-Time Object Detection
- YOLOv2:YOLO9000 Better, Faster, Stronger
- YOLOv3:YOLOv3: An Incremental Improvement
- YOLOv4:YOLOv4: Optimal Speed and Accuracy of Object Detection
- v1-v4原文加翻译博客 链接
目标检测框架
当前训练目标检测模型推荐使用mmdetection,其中已经集成了很多主流的目标检测模型,开箱即用。
环境支持
安装的mmdetection版本要与你之前安装的Pytorch版本和CUDA版本匹配
建议
可以在Linux环境下使用docker来构建mmdetection容器,方便使用
- 安装docker 20.10.6版本 链接
- 从dockerHub上拉取镜像教程 链接
- 拉取 zzzzz217/mmdetection:2.0
docker pull zzzzz217/mmdetection:2.0
- 启动镜像
docker run --gpus all --shm-size=8g -d -P zzzzz217/mmdetection:2.0
- 查看容器的22端口对应的当前宿主机的端口
docker container ls -a
类似0.0.0.0:7022->22/tcp
就是主机7022端口对应容器中22端口 - 基于ssh服务连接至容器内,ssh密码为1234,mmdetection目录为根目录下的
/mmdetection
文件夹