深度学习基础推荐书籍

深度学习基础推荐书籍

  • 《神经网络与深度学习pdf》-邱锡鹏 链接

Pytorch深度学习框架

一定需要学会安装CUDA和安装Pytorch时版本要与CUDA版本匹配

视频资料

经典论文

双阶段训练目标检测模
  • Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks 论文
  • FPN:Feature Pyramid Networks for Object Detection 论文
  • R-FCN:Object Detection via Region based Fully Convolutional Networks 论文
单阶段训练目标检测模型
  • YOLOv1:You Only Look Once Unified, Real-Time Object Detection
  • YOLOv2:YOLO9000 Better, Faster, Stronger
  • YOLOv3:YOLOv3: An Incremental Improvement
  • YOLOv4:YOLOv4: Optimal Speed and Accuracy of Object Detection
  • v1-v4原文加翻译博客 链接

目标检测框架

当前训练目标检测模型推荐使用mmdetection,其中已经集成了很多主流的目标检测模型,开箱即用。

环境支持

安装的mmdetection版本要与你之前安装的Pytorch版本和CUDA版本匹配

  • mmdetection的Github地址 链接
  • 建议在Linux环境下安装 链接
  • mmdetection的使用 链接
建议

可以在Linux环境下使用docker来构建mmdetection容器,方便使用

  1. 安装docker 20.10.6版本 链接
  2. 从dockerHub上拉取镜像教程 链接
  3. 拉取 zzzzz217/mmdetection:2.0 docker pull zzzzz217/mmdetection:2.0
  4. 启动镜像 docker run --gpus all --shm-size=8g -d -P zzzzz217/mmdetection:2.0
  5. 查看容器的22端口对应的当前宿主机的端口docker container ls -a 类似0.0.0.0:7022->22/tcp就是主机7022端口对应容器中22端口
  6. 基于ssh服务连接至容器内,ssh密码为1234,mmdetection目录为根目录下的 /mmdetection 文件夹
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值