Latex常见语法

Latex公式速查表

希腊字母:

大写写法小写写法
A A AA α \alpha α\alpha
B B BB β \beta β\beta
Γ \Gamma Γ\Gamma γ \gamma γ\gamma
Δ \Delta Δ\Delta δ \delta δ\delta
H H HH η \eta η\eta
Θ \Theta Θ\Theta θ \theta θ\theta
Λ \Lambda Λ\Lambda λ \lambda λ\lambda
M M MM μ \mu μ\mu
N N NN ν \nu ν\nu
Ξ \Xi Ξ\Xi ξ \xi ξ\xi
Π \Pi Π\Pi π \pi π\pi
P P PP ρ \rho ρ\rho
Σ \Sigma Σ\Sigma σ \sigma σ\sigma
T T TT τ \tau τ\tau
Y Y YY υ \upsilon υ\upsilon
Φ \Phi Φ\Phi ϕ \phi ϕ\phi
Ψ \Psi Ψ\Psi ψ \psi ψ\psi
Ω \Omega Ω\Omega ω \omega ω\omega

括号与位置标定

  • 上标、下标:^ _ :x_2^3 x 2 3 x_2^3 x23
  • 求和:\sum下标~上标,例如: ∑ i = 0 n \sum_{i=0}^n i=0n : $\sum_{i=0}^n$
  • 积分:
    • \int下标~上标,例如: ∫ 1 ∞ \int_1^\infty 1 : $\int_1^\infty$
    • \iint下标~上标,例如: ∬ 1 ∞ \iint_1^\infty 1: $\iint_1^\infty$
  • 连乘: ∏ { a + b } \prod\lbrace a+b \rbrace {a+b}: $\prod\lbrace a+b \rbrace$
  • max ⁡ c k \max_{c_k} maxck: $\max_{c_k}$

特殊函数与符号

形式语法形式语法
< \lt <\lt > \gt >\gt
≤ \le \le ≥ \ge \ge
≠ \ne =\ne ≱ \not \ge \not \ge
∪ \cup \cup ∩ \cap \cap
∖ \setminus :差集\setminus ⊂ \subset \subset
⊆ \subseteq \subseteq ⊊ \subsetneq \subsetneq
⊃ \supset \supset ∈ \in \in
∉ \notin /\notin 、\not \in ∅ \emptyset \emptyset
∅ \varnothing \varnothing ↦ \mapsto \mapsto
→ \to \to → \rightarrow \rightarrow
← \leftarrow \leftarrow ⇐ \Leftarrow \Leftarrow
⇒ \Rightarrow \Rightarrow ¬ \lnot ¬\lont
∧ \land \land ∨ \lor \lor
∀ \forall \forall ∃ \exists \exists
⊤ \top \top ⊥ \bot \bot
⊢ \vdash \vdash ⊨ \vDash \vDash
⋆ \star \star ∗ \ast \ast
⊕ \oplus \oplus ∘ \circ \circ
∙ \bullet \bullet ≈ \approx \approx
∼ \sim \sim ≡ \equiv \equiv
≺ \prec \prec ∞ \infty \infty
ℵ o \aleph_o o\aleph_o ∇ \nabla \nabla
ℑ \Im \Im R \R R\R
ℜ \Re \Re a ( m o d b ) a\pmod b a(modb)\pmod
… \ldots \ldots (low) ⋯ \cdots \cdots (center)
⋅ \cdot \cdot x ˙ \dot x x˙\dot x
x ^ \hatx ^\hat x x y z ^ \widehat {xyz} xyz \widehat {xyz}
x ‾ \overline x x\overline x x ⃗ \vec x x \vec x
x → \overrightarrow x x \overrightarrow x s a s d \mathbf {sasd} sasd\mathbf {} 黑体
A C B D \mathtt {ACBD} ACBD\mathtt{ABCD} A B C D R \Bbb{ABCDR} ABCDR\Bbb{ABCDR}

括号:

形式写法
( x ) (x) (x)$(x)$
[ x ] [x] [x]$[x]$
{ x } \lbrace x \rbrace {x}$\lbrace x \rbrace$
⟨ x ⟩ \langle x \rangle x$\langle x \rangle$
⌈ x ⌉ \lceil x \rceil x$\lceil x \rceil$
⌊ x ⌋ \lfloor x \rfloor x$\lfloor x \rfloor$

分数与根式

形式写法
a b + 1 \frac a{b+1} b+1a$\frac a {b+1}$
a + 1 b {a+1} \over {b} ba+1${a+1} \over {b}$
x = a 0 + 1 2 a 1 + a 2 2 x = a_0 + \frac {1^2}{a_1 + \frac {a_2}{2}} x=a0+a1+2a212$x = a_0 + \frac {1^2} {a_1 + \frac {a_2}{2}}$
x y 2 \sqrt [2] {\frac x y} 2yx $\sqrt [2] {\frac x y}$

分段函数、多行算式

形式写法
f ( n ) { n 2 , i f   n   =   9 3 n + 1 , i f   n   ≠ 9 f(n) \begin{cases} \cfrac n2, &if\ n\ =\ 9\\ 3n+1, &if\ n\ \neq 9 \end{cases} f(n)2n,3n+1,if n = 9if n =9$f(n) \begin{cases} \cfrac n2, &if\ n\ =\ 9\ 3n+1, &if\ n\ \neq 9 \end{cases}$

方程组

形式语法
\left { \begin{array}{c} … \end{array} \right.
{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y − c 2 z = d 2 2 \left \{\begin{array}{c} a_1x+b_1y+c_1z = d_1\\a_2x+b_2y-c_2z=d_2^2 \end{array} \right. {a1x+b1y+c1z=d1a2x+b2yc2z=d22$\left {\begin{array}{c} a_1x+b_1y+c_1z = d_1\\a_2x+b_2y-c_2z=d_2^2 \end{array} \right.$

矩阵

形式语法
1 x x 2 1 y y 2 1 z z 2 \begin{matrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{matrix} 111xyzx2y2z2\begin{matrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\ end{matrix}
( 1 x x 2 1 y y 2 1 z z 2 ) \begin{pmatrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{pmatrix} 111xyzx2y2z2\begin{pmatrix}1 & x & x^2\1 & y & y^2\1 & z & z^2\\end{pmatrix}
[ 1 x x 2 1 y y 2 1 z z 2 ] \begin{bmatrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{bmatrix} 111xyzx2y2z2\begin{bmatrix}1 & x & x^2\1 & y & y^2\1 & z & z^2\\end{bmatrix}
∣ 1 x x 2 1 y y 2 1 z z 2 ∣ \begin{vmatrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{vmatrix} 111xyzx2y2z2\begin{vmatrix}1 & x & x^2\1 & y & y^2\1 & z & z^2\\end{vmatrix}
∥ 1 x x 2 1 y y 2 1 z z 2 ∥ \begin{Vmatrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{Vmatrix} 111xyzx2y2z2\begin{Vmatrix}1 & x & x^2\1 & y & y^2\1 & z & z^2\\end{Vmatrix}

公式标号

形式语法
KaTeX parse error: \tag works only in display equationsx+y=z \tag{1.2}

Latex公式速查表

希腊字母:

大写写法小写写法
A A AA α \alpha α\alpha
B B BB β \beta β\beta
Γ \Gamma Γ\Gamma γ \gamma γ\gamma
Δ \Delta Δ\Delta δ \delta δ\delta
H H HH η \eta η\eta
Θ \Theta Θ\Theta θ \theta θ\theta
Λ \Lambda Λ\Lambda λ \lambda λ\lambda
M M MM μ \mu μ\mu
N N NN ν \nu ν\nu
Ξ \Xi Ξ\Xi ξ \xi ξ\xi
Π \Pi Π\Pi π \pi π\pi
P P PP ρ \rho ρ\rho
Σ \Sigma Σ\Sigma σ \sigma σ\sigma
T T TT τ \tau τ\tau
Y Y YY υ \upsilon υ\upsilon
Φ \Phi Φ\Phi ϕ \phi ϕ\phi
Ψ \Psi Ψ\Psi ψ \psi ψ\psi
Ω \Omega Ω\Omega ω \omega ω\omega

括号与位置标定

  • 上标、下标:^ _ :x_2^3 x 2 3 x_2^3 x23
  • 求和:\sum下标~上标,例如: ∑ i = 0 n \sum_{i=0}^n i=0n : $\sum_{i=0}^n$
  • 积分:
    • \int下标~上标,例如: ∫ 1 ∞ \int_1^\infty 1 : $\int_1^\infty$
    • \iint下标~上标,例如: ∬ 1 ∞ \iint_1^\infty 1: $\iint_1^\infty$
  • 连乘: ∏ { a + b } \prod\lbrace a+b \rbrace {a+b}: $\prod\lbrace a+b \rbrace$
  • max ⁡ c k \max_{c_k} maxck: $\max_{c_k}$

特殊函数与符号

形式语法形式语法
< \lt <\lt > \gt >\gt
≤ \le \le ≥ \ge \ge
≠ \ne =\ne ≱ \not \ge \not \ge
∪ \cup \cup ∩ \cap \cap
∖ \setminus :差集\setminus ⊂ \subset \subset
⊆ \subseteq \subseteq ⊊ \subsetneq \subsetneq
⊃ \supset \supset ∈ \in \in
∉ \notin /\notin 、\not \in ∅ \emptyset \emptyset
∅ \varnothing \varnothing ↦ \mapsto \mapsto
→ \to \to → \rightarrow \rightarrow
← \leftarrow \leftarrow ⇐ \Leftarrow \Leftarrow
⇒ \Rightarrow \Rightarrow ¬ \lnot ¬\lont
∧ \land \land ∨ \lor \lor
∀ \forall \forall ∃ \exists \exists
⊤ \top \top ⊥ \bot \bot
⊢ \vdash \vdash ⊨ \vDash \vDash
⋆ \star \star ∗ \ast \ast
⊕ \oplus \oplus ∘ \circ \circ
∙ \bullet \bullet ≈ \approx \approx
∼ \sim \sim ≡ \equiv \equiv
≺ \prec \prec ∞ \infty \infty
ℵ o \aleph_o o\aleph_o ∇ \nabla \nabla
ℑ \Im \Im R \R R\R
ℜ \Re \Re a ( m o d b ) a\pmod b a(modb)\pmod
… \ldots \ldots (low) ⋯ \cdots \cdots (center)
⋅ \cdot \cdot x ˙ \dot x x˙\dot x
x ^ \hatx ^\hat x x y z ^ \widehat {xyz} xyz \widehat {xyz}
x ‾ \overline x x\overline x x ⃗ \vec x x \vec x
x → \overrightarrow x x \overrightarrow x s a s d \mathbf {sasd} sasd\mathbf {} 黑体
A C B D \mathtt {ACBD} ACBD\mathtt{ABCD} A B C D R \Bbb{ABCDR} ABCDR\Bbb{ABCDR}

括号:

形式写法
( x ) (x) (x)$(x)$
[ x ] [x] [x]$[x]$
{ x } \lbrace x \rbrace {x}$\lbrace x \rbrace$
⟨ x ⟩ \langle x \rangle x$\langle x \rangle$
⌈ x ⌉ \lceil x \rceil x$\lceil x \rceil$
⌊ x ⌋ \lfloor x \rfloor x$\lfloor x \rfloor$

分数与根式

形式写法
a b + 1 \frac a{b+1} b+1a$\frac a {b+1}$
a + 1 b {a+1} \over {b} ba+1${a+1} \over {b}$
x = a 0 + 1 2 a 1 + a 2 2 x = a_0 + \frac {1^2}{a_1 + \frac {a_2}{2}} x=a0+a1+2a212$x = a_0 + \frac {1^2} {a_1 + \frac {a_2}{2}}$
x y 2 \sqrt [2] {\frac x y} 2yx $\sqrt [2] {\frac x y}$

分段函数、多行算式

形式写法
f ( n ) { n 2 , i f   n   =   9 3 n + 1 , i f   n   ≠ 9 f(n) \begin{cases} \cfrac n2, &if\ n\ =\ 9\\ 3n+1, &if\ n\ \neq 9 \end{cases} f(n)2n,3n+1,if n = 9if n =9$f(n) \begin{cases} \cfrac n2, &if\ n\ =\ 9\ 3n+1, &if\ n\ \neq 9 \end{cases}$

方程组

形式语法
{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y − c 2 z = d 2 2 \left \{\begin{array}{c} a_1x+b_1y+c_1z = d_1\\a_2x+b_2y-c_2z=d_2^2 \end{array} \right. {a1x+b1y+c1z=d1a2x+b2yc2z=d22$\left {\begin{array}{c} a_1x+b_1y+c_1z = d_1\\a_2x+b_2y-c_2z=d_2^2 \end{array} \right.$

矩阵

形式语法
1 x x 2 1 y y 2 1 z z 2 \begin{matrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{matrix} 111xyzx2y2z2\begin{matrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\ end{matrix}
( 1 x x 2 1 y y 2 1 z z 2 ) \begin{pmatrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{pmatrix} 111xyzx2y2z2\begin{pmatrix}1 & x & x^2\1 & y & y^2\1 & z & z^2\\end{pmatrix}
[ 1 x x 2 1 y y 2 1 z z 2 ] \begin{bmatrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{bmatrix} 111xyzx2y2z2\begin{bmatrix}1 & x & x^2\1 & y & y^2\1 & z & z^2\\end{bmatrix}
∣ 1 x x 2 1 y y 2 1 z z 2 ∣ \begin{vmatrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{vmatrix} 111xyzx2y2z2\begin{vmatrix}1 & x & x^2\1 & y & y^2\1 & z & z^2\\end{vmatrix}
∥ 1 x x 2 1 y y 2 1 z z 2 ∥ \begin{Vmatrix}1 & x & x^2\\1 & y & y^2\\1 & z & z^2\\\end{Vmatrix} 111xyzx2y2z2\begin{Vmatrix}1 & x & x^2\1 & y & y^2\1 & z & z^2\\end{Vmatrix}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值