深度学习笔记
文章平均质量分 54
cici_iii
keep coding
展开
-
抑制过拟合之正则化与Dropout
避免过拟合:1、增大数据集合 – 使用更多的数据,噪声点比减少(减少数据扰动所造成的影响)2、减少数据特征 – 减少数据维度,高维空间密度小(减少模型复杂度)3、正则化 / dropout / 数据增强 – 在缺少训练数据情况下一、Dropout介绍:训练时:随机人为丢弃一些神经单元测试时:使用全部神经单元原理:1.取平均的作用:相同训练数据训练5个不同的神经网络,得到5个不同结果,此时可以采用“5个结果取平均值”或“多数取胜投票策略”决定最终结果。2.减少神经元之间复杂的公适应关系:因原创 2021-03-30 15:53:25 · 295 阅读 · 0 评论 -
CNN卷积神经网络(吴恩达《卷积神经网络》笔记一)
CNN 卷积网络说明卷积 Convolution填充 Padding步长 StrideRGB图像卷积池化 Pooling完整CNN为什么人们喜欢用卷积神经网络?说明关于RNN的基础知识:卷积、填充、步长、池化、完整的深度RNN网络可以参考链接: AI学习笔记——卷积神经网络(CNN).本文主要侧重介绍这些操作背后的具体含义并且记录一下吴恩达老师课程的知识点。卷积 Convolution...原创 2019-07-21 19:52:19 · 755 阅读 · 0 评论 -
RNN循环神经网络(吴恩达《序列模型》笔记一)
为什么选择序列模型1、使用序列模型的例子(监督学习)2、数学符号用1来代表人名,0来代表非人名,句子x便可以用y=[1 1 0 1 1 0 0 0 0]来表示3、循环网络模型值得一提的是,共享特征还有助于减少神经网络中的参数数量,一定程度上减小了模型的计算复杂度。RNN模型包含三类权重系数,分别是Wax,Waa,Wya。优点:不同元素之间同一位置共享同一权重系数。缺点:它只使...原创 2019-07-22 15:34:40 · 1163 阅读 · 0 评论 -
Tensorflow实现LSTM详解
关于什么是 LSTM 我就不详细阐述了,吴恩达老师视频课里面讲的很好,我大概记录了课上的内容在,网上也有很多写的好的解释,比如:理解LSTM网络然而,理解挺简单,上手写的时候还是遇到了很多的问题,网上大部分的博客都没有讲清楚参数的设置,在我看了n多篇文章后终于搞明白了,写出来让大家少走一些弯路吧!...原创 2019-09-24 08:31:13 · 7706 阅读 · 0 评论