目的:
1、加快计算速度
2、缓解大数据压力
使用方式:
详见:【分布式训练】单机多卡的正确打开方式(三):PyTorch
注意:
1、选择 DistributedDataParallel 要比 DataParallel 好
2、可能需要在parser中添加 parser.add_argument("--local_rank", type=int, help="")
如果你出现下面这种错误的话:
- argument for training: error: unrecognized arguments: --local_rank=2
- subprocess.CalledProcessError: Command ‘[…]’ returned non-zero exit status 2.
3、如果你的model要加载预训练的参数的话,那么,加载参数的代码需要放在第五步封装之前。比如下面的例子:
# 4) 封装之前要把模型移到对应的gpu
model = model.to(device)
model.load_state_dict(checkpoint["model"]) # 加载预训练参数
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# 5) 封装
model = torch.nn.parallel.DistributedDataParallel(model,device_ids=[local_rank],output_device=local_rank)
4、里面没提到的细节:
在执行命令的时候,参数nproc_per_node的值是你使用的gpu的数量,例如这里使用了gpu0和1,所以数量是2。
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 torch_ddp.py