【分布式训练】单机多卡—PyTorch

目的:

1、加快计算速度
2、缓解大数据压力

使用方式:

详见:【分布式训练】单机多卡的正确打开方式(三):PyTorch
注意:
1、选择 DistributedDataParallel 要比 DataParallel 好

2、可能需要在parser中添加 parser.add_argument("--local_rank", type=int, help="") 如果你出现下面这种错误的话:

  • argument for training: error: unrecognized arguments: --local_rank=2
  • subprocess.CalledProcessError: Command ‘[…]’ returned non-zero exit status 2.

3、如果你的model要加载预训练的参数的话,那么,加载参数的代码需要放在第五步封装之前。比如下面的例子:

# 4) 封装之前要把模型移到对应的gpu
model = model.to(device)
model.load_state_dict(checkpoint["model"]) # 加载预训练参数
if torch.cuda.device_count() > 1:
    print("Let's use", torch.cuda.device_count(), "GPUs!")
    # 5) 封装
    model = torch.nn.parallel.DistributedDataParallel(model,device_ids=[local_rank],output_device=local_rank)

4、里面没提到的细节:
在执行命令的时候,参数nproc_per_node的值是你使用的gpu的数量,例如这里使用了gpu0和1,所以数量是2。

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 torch_ddp.py

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值