智能算法学习
智能算法学习
南音小榭
小楼昨夜又东风
展开
-
烟花算法初探
前沿:函数优化求解问题学习过程中,不可避免选择求解算法,且不同的算法收敛速度不同,复杂度不同。探究问题求解的性能,则需要对求解算法进行对比。因此,在这里,引入烟花算法。以下资料来源于书籍:《烟花算法引论》谭营 著;科学出版社,20151.烟花算法介绍2.算法组成3.算法实现3.1 随机维度选择随机维度选择是指在1和dim之间随机选择n个维度,且n个维度不重复。作用是在进行位移操作时对指定数量的位置进行偏移,即产生新的爆炸火花。过程实现如下:void DimensionRand(i原创 2020-09-08 16:52:33 · 4492 阅读 · 0 评论 -
差分进化算法求解函数优化问题
前言:在这里,我们尝试使用标准差分进化算法对无约束函数优化问题进行求解。由于使用的是基础算法,效果不显著。在未来,应该讨论完善的、改进的算法的应用。算法内容参考书籍:差分进化算法理论与应用 张春美著差分进化算法(DE)是一类全局优化算法,算法的操作流程与遗传算法相类似,包括变异、交叉和选择操作,但这些操作的具体定义与遗传算法有所不同。1.标准差分进化算法1.2差分变异1.3交叉1.4 选择2.C++示例2.1缩放因子差分进化算法的参数缩放因子F表示对基向量的扰动程度,对于计算原创 2020-07-29 18:43:53 · 2318 阅读 · 0 评论 -
模拟退火算法求解函数优化问题举例
前言:在这里,我们尝试使用模拟退火算法对函数优化问题进行求解。由于使用的是基础算法,并且简化了相关过程,所以求解效果不显著。在未来,应该讨论完善的、改进的模拟退火算法的应用。算法内容参考书籍:模拟退火算法及其应用案例参考博客:模拟退火算法与其python实现(一)1.固体退火过程固体退火是先将固体加热至熔化,再通过冷却凝固成规整晶体的热力学过程。2.固体退火现象在加热固体时,固体粒子的热运动不断增强,随着温度的升高,粒子预期平衡位置的偏离越来越大。当温度升至溶解温度后,固体的规则性被彻底破坏,从原创 2020-06-24 11:06:00 · 1595 阅读 · 0 评论 -
遗传算法求解函数优化问题-基本遗传算法SGA
博客内图片文字来源于书本《遗传算法及其应用》1.算法介绍《遗传算法及其应用》是在阅读GA过程中较好的一本算法基础方法介绍的书,想要从零开始详细的进行学习的同学们,这是很好的参考工具。关于遗传算法,《遗传算法及其应用》一书给出了最为详尽的描述,书中也针对不同问题给出了基础的方法,例如组合优化问题中的函数优化、背包问题、货郎担问题和图论等等。2.实例介绍在上述内容的基础上,使用C...原创 2020-05-07 13:50:28 · 2046 阅读 · 0 评论 -
PSO算法求解(下)-罚函数方法
在上一篇博客“PSO算法求解(上)-基本PSO”中,回顾了基本粒子群算法求解无约束问题的流程,那么,有约束的问题该如何求解?一种方法是将约束作为边界,对产生的粒子除边界检验以外,再考虑粒子是否满足约束式,如博客https://blog.csdn.net/weixin_37980595/article/details/104467199;然而,这种方法的求解过程非常缓慢,且操作较繁琐。另一种方法...原创 2020-04-30 16:35:41 · 5718 阅读 · 8 评论 -
PSO算法求解(上)-基本PSO
粒子群算法是智能算法之一,应用还是比较广泛的,尤其是在毕设当中。前一次关于“PSO求解整数规划问题”的举例说明比较突兀,并没有完整的依据,且求解方法是笨拙的,根本不适应一般求解。这里,将从基本粒子群算法出发,然后过渡到一般问题的求解。首先,使用基本粒子群求解无约束问题。图片中文字来源:粒子群算法及应用_纪震著_北京:科学出版社_2009.01基本粒子群算法求解无约束问题:#include...原创 2020-04-29 21:16:09 · 2018 阅读 · 2 评论 -
PSO算法求解整数规划问题举例
前言:最近在使用群智能算法求解线性规划问题的过程中,由于初次设计该方面的知识,在网络上检索了许多相关的智能算法的案例进行学习。首先选择了粒子群算法求解线性规划问题,但是网络上已有的一些资料对于非专业出身的同学来说理解较为困难,并且没有专门解决线性规划的实例,因此在这里进行一次分享。注意:代码可能啰嗦,适用于初入同学,有错误请指正。首先,简要介绍一下粒子群算法。粒子群算法(PSO)是一种起源于鸟...原创 2020-02-23 21:26:06 · 6176 阅读 · 9 评论