1、RFM概述
1.1、RFM的由来
RFM 分析是美国数据库营销研究所提出的一种简单实用客户分析方法,发现客户数据中有三个要素:
-
R是指用户的最近一次消费时间,用最通俗的话说就是,用户最后一次下单时间距今天有多长时间了,这个指标与用户流失和复购直接相关。
F是指用户下单频率,通俗一点儿就是,用户在固定的时间段内消费了几次。这个指标反映了用户的消费活跃度。
M是指用户消费金额,其实就是用户在固定的周期内在平台上花了多少钱,直接反映了用户对公司贡献的价值。
而RFM模型就是通过一个客户的近期购买行为、购买的总体频率以及花了多少钱三项指标,来描述该客户的价值状况。这三项指标构成了数据分析最好的指标。
1.2、RFM的作用
在实际工作需要中,公司需要对不同价值的客户规划不同的应对策略,这就需要对客户价值进行阜南县,RFM 分析就是通过三个关键指标(RFM)对客户进行观察和分类,判断每类细分用户的价值。针对不同的特征的客户进行相应的营销策略。
1.3、RFM分析原理
1.3.1、建立客户最近一次消费距今天数评价
原理介绍:当用户最近消费时间距今天数小于用户总体平均值时,标记为 1 ,否则标记为 0 ,公式为IF(最近一次消费距今天数<最近一次消费距今平均天数,1,0)。
1.3.2、建立客户下单频率评价
原理介绍:当用户平均下单频率大于用户总体平均值时,标记为 1 ,否则标记为 0 ,公式为IF(下单频率>平均下单频率,1,0)。
1.3.3、建立客户消费金额评价
原理介绍:当用户平均单次消费金额大于用户总体平均值时,标记为 1 ,否则标记为 0 ,公式为IF(平均单次消费金额>用户平均消费金额,1,0)。
1.3.4、客户价值模型划分
2、RFM案例分析
2.1、主流分析工具介绍
目前RFM分析可以借助很多主流工具进行实际操作,本文采用fineBI工具对RFM进行案例介绍。
2.2、效果实现
2.3、 实现思路
创建分析主题对原始数据进行加工。实现思路如下所示:
1)创建分析主题,选择 RFM 分析所需字段。
2)对数据进行加工,求得 3 个关键指标及其平均值。
3)通过和平均值比较,量化三个指标。
4)根据特征向量客户分类。
2.3.1、创建分析主题、添加分析表
添加Excel明细表后,进入本界面
显示需要的字段,隐藏不需要的字段,本案例分析中,我们需要用到的数据是CUSTOMERNAME、MONEY、DATE三个字段,所以只保留这三个字段。
得到以下图所示数据,开始对数据进行加工处理。
2.3.2、计算客户的消费指标
计算每个客户的平均单次消费金额、消费次数、最后一次消费距今天数。
1)对数据进行分组汇总,如下图所示:(以用户名称为分组依据,分别汇单个用户消费次数、单个用户平均消费金额、单个用户消费总金额、单个用户最后一次消费时间),并对字段进行重命名,便于后续操作。
2)求最近一次消费距今的天数,新增一列计算时间差,如下图所示:
由此得到我们需要分析的三个指标:单个用户消费次数、单个用户平均消费金额、单个用户消费总金额、单个用户最后一次消费时间
2.3.3、计算所有客户消费指标的平均值
2.3.3.1、用户平均消费金额(所有用户消费总金额/所有用户总消费次数)
1)新增列,计算所有用户消费总金额,如下图所示:
2)新增列,计算所有用户的消费总次数,如下图所示 :
3)新增列,计算所有用户平均消费金额,用户平均消费金额=所有用户消费总金额/所有用户消费总次数,如下图所示:
2.3.3.2、用户平均消费次数
1)新增列,计算所有用户的平均消费次数,如下图所示:
2.3.3.3、最近一次消费距今平均天数
1)增列,求所有用户最近一次消费距今的平均天数,如下图所示:
如此我们便计算出了:每个用户的单次消费金额和所有用户平均后的单次消费金额;每个用户的消费次数和所有用户平均的消费次数;每个用户最近一次消费距今天数和所有用户最近一次消费距今平均天数。
2.3.4、建立用户指标评价
根据关键指标是否大于客户总体平均值水平进行评价,其中在IF(xxx>客户总体xxx平均值,1,0)中,小于总体平均的设为 0,大于总体平均的设为 1 ,使得 1 都是保持正向特征,0 保持负向特征。
2.3.4.1、用户次均消费金额评价
新增公式列「次均消费金额评价」,当用户平均单次消费金额大于用户总体平均值时,标记为 1 ,否则标记为 0 ,公式为IF(单个用户平均消费金额>用户平均消费金额,1,0)。如下图所示:
2.3.4.2、用户消费次数评价
新增公式列「消费次数评价」,当用户消费次数大于用户总体平均值时,标记为 1 ,否则标记为 0 ,公式为IF(单个用户消费次数>所有用户的平均消费次数,1,0)。如下图所示:
2.3.4.3、最近一次消费距今天数评价
新增公式列「最近一次消费距今天数评价」,当用户最近消费时间距今天数小于用户总体平均值时,标记为 1 ,否则标记为 0 ,公式为IF(最近一次消费距今的天数<所有用户最近一次消费距今平均天数,1,0)。如下图所示:
2.3.4.4、添加 RFM 指标
新增公式列「RFM」,使用 CONCATENATE() 函数将 RFM 向量化值拼接起来,顺序为:最近一次消费距今天数评价、消费次数评价、次均消费金额评价。公式为CONCATENATE(最近一次消费距今天数评价,消费次数评价,次均消费金额评价),如下图所示:
得到以下数据表
2.3.4.5、 对 RFM 指标分组
新增赋值列「客户类型」,对「RFM」列分组赋值,如下图所示:
2.3.5、效果查看
3、RFM总结
3.1、分析原理总结
RFM客户价值分析主要用的到指标为客户消费次数、客户消费金额、客户最近一次消费,整体分析可以结合月度、年度,根据需要进行分析。以单个用户平均指标与所有用户平均指标进行比较,进而分析单个用户与所有用户之间的价值关系。也可以用于公司销售单品对客户忠诚度的评价。