机器学习
XR要做有思考的笔记
观察,思考,记录
展开
-
【机器学习】卷积层,池化层,全连接层,BN层作用;CNN 网络参数数量的计算
官方文档:https://keras.io/layers/convolutional/#zeropadding2dhttps://www.cnblogs.com/ymjyqsx/p/9451739.html【搬运】conv卷积层:1.相当于一个特征提取器来提取特征2.提供了位置信息3.减少了参数个数https://blog.csdn.net/m0_37622530/articl...原创 2019-06-22 13:37:53 · 13196 阅读 · 3 评论 -
【机器学习】CNN模型:AlexNet、VGG16、GoogLeNet(InceptionV3)、ResNet50、Xception
http://www.mamicode.com/info-detail-2275810.html【搬运】图像分类的传统流程涉及两个模块:特征提取(特征能捕捉到各个类别间的区别(特征有一定的代表性),常用的传统特征包括GIST, HOG, SIFT, LBP等。)和分类(SVM,LR,随机森林及决策树等。)。AlexNethttps://www.cnblogs.com/wangguchang...转载 2019-07-08 08:40:53 · 4639 阅读 · 1 评论