题目
https://www.lintcode.com/problem/3731
给定两个 长度相等 的数组 nums1 和 nums2,这两个数组的 乘积和 为数组中相等索引下标的乘积之和 nums1[i] * nums2[i]。
比如 nums1 = [1, 3, 5, 7] ,nums2 = [2, 4, 6, 8],则乘积和为 1*2 + 3*4 + 5*6 + 7*8 = 100
现在可以修改 nums1 和 nums2 的元素顺序,使得两数组的乘积之和最小,并返回它们的 最小乘积和。
nums1.length==nums2.length==n
1≤n≤10 ^5
1≤nums1[i],nums2[i]≤100
样例
样例 1:
输入:
nums1 = [5, 8, 1, 9, 3]
nums2 = [3, 2, 4, 6, 1]
输出:
58
解释:
nums1 调整为 [5, 8, 3, 1, 9]
结果为 5*3 + 8*2 + 3*4 + 1*6 + 9*1 = 58
样例 2:
输入:
nums1 = [5, 3, 4, 2]
nums2 = [4, 2, 2, 5]
输出:
40
解释:
将 nums1 调整为 [3, 5, 4, 2]
结果为 3*4 + 5*2 + 4*2 + 2*5 = 40
思路
解题思路
方法:数学
假设 nums1 中的元素为 [a, b],
nums2 中的元素为 [x, y],并且有 a <= b, x <= y,则有以下两种乘积组合:
temp1=a×x+b×y
temp2=a×y+b×x
比较两种乘积组合的大小,有:
temp2−temp1 =a×(y−x)+b×(x−y)
=a×(y−x)−b×(y−x)
=(a−b)×(y−x)≤0
即:
temp2≤temp1
因此选择第二种组合,即选取 nums1 中较小元素与 nums2 中较大元素进行相乘。
答案
public class Solution {
/**
* @param nums1: An integer array
* @param nums2: An integer array
* @return: Minimize product sum of two arrays
*/
public int minProductSum(int[] nums1, int[] nums2) {
/*
解题思路
方法:数学
假设 nums1 中的元素为 [a, b],nums2 中的元素为 [x, y],并且有 a <= b, x <= y,则有以下两种乘积组合:
temp1=a×x+b×y
temp2=a×y+b×x
比较两种乘积组合的大小,有:
temp2−temp1 =a×(y−x)+b×(x−y)
=a×(y−x)−b×(y−x)
=(a−b)×(y−x)≤0
即:
temp2≤temp1
因此选择第二种组合,即选取 nums1 中较小元素与 nums2 中较大元素进行相乘。
*/
Arrays.sort(nums1);
Arrays.sort(nums2);
int n = nums1.length;
int ans =0;
for (int i = 0; i <n ; i++) {
ans += nums1[i]*nums2[n-i-1];
}
return ans;
}
}