LeetCode题解11:爬楼梯

Climbing Stairs

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
题目要求
  1. 假定你正在爬梯子,梯子有n级,假定你每次可以爬一级梯子或者两级梯子,求你爬上n级梯子有多少种爬法。
解题思路

采用动态规划法来解,动态规划法的核心是状态和状态转移方程,在这里我们设还剩爬n级梯子可能的方法数是stairs[n],那么从爬到n级有两种方法,要么从n-1级爬1级,要么从n-2级爬两级。于是状态转移方程可以写成,stairs[n]=stairs[n-1]+stairs[n-2]。

时间复杂度O(n) 超过100%的java提交

class Solution {
    public int maxSubArray(int[] nums) {
        int l = 0,r = nums.length;
        return recursive(nums,l,r);
    }
    private int recursive(int[] nums,int l,int r){
        if(l+1==r) return nums[l];
        int middle = (l+r)/2;
        int lval = recursive(nums,l,middle);
        int rval = recursive(nums,middle,r);
        // 合并中间的值
        int lspread=2,rspread=1,maxl = nums[middle-1],maxr=nums[middle];
        int templ=maxl,tempr=maxr;
        while(middle-lspread>=l){
            templ+=nums[middle-lspread];
            maxl = Math.max(maxl,templ);
            lspread++;
        }
        while(middle+rspread<r){
            tempr+=nums[middle+rspread];
            maxr=Math.max(maxr,tempr);
            rspread++;
        }
        return Math.max(maxr+maxl,Math.max(lval,rval));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值