无需七参数,使用Python批量化将WGS84坐标系转为CGCS20003/6度带坐标

本文介绍了一种使用Python和Pyproj库将CSV文件中的经纬度坐标转换为CGCS2000坐标的解决方案,通过批量处理避免了单点转换的繁琐,且结果精度较高。作者分享了代码示例和转换前后坐标的小数点误差分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

前言

已知点的经纬度坐标txt csv格式均可,将文件内点坐标统一转为CGCS2000 坐标,期间借鉴了https://blog.csdn.net/weixin_40575956/article/details/107288757 里的方法,利用arcgis转了一个点,但是没办法批量处理,所以自己想办法利用Python实现这一功能,最终python处理结果与arcgis基本一样,但可以轻松搞定海量点数据。(这个方法本身可能存在不严谨性,通常情况下涉及到坐标系转换精度要求较高的话还是需要七参数或者四参数)


直接上代码

代码如下(示例):

import pandas as pd
import pyproj


# 定义坐标转换函数
def convert_to_cgcs2000(lat, lon):
    transformer = pyproj.Transformer.from_crs("epsg:4326", "epsg:4521", always_xy=True)
    cgcs2000_lon, cgcs2000_lat = transformer.transform(lon, lat)
    return cgcs2000_lat, cgcs2000_lon
    
# 读取CSV文件
input_file = '示范段.csv'  # 请替换为您的CSV文件路径
df = pd.read_csv(input_file, encoding='GBK')

# 批量转换坐标
df['CGCS2000_Latitude'], df['CGCS2000_Longitude'] = zip(*df.apply(lambda row: convert_to_cgcs2000(row['纬度'], row['经度']), axis=1))

# 选择要保留的列(点标签和新的CGCS2000坐标),并生成新的DataFrame
new_df = df[['点标签', 'CGCS2000_Latitude', 'CGCS2000_Longitude', '海拔']]

# 保存新的DataFrame到CSV文件,不包含原始经纬度信息
output_file = 'output.csv'  # 请替换为输出文件路径
new_df.to_csv(output_file, index=False, encoding='GBK', float_format='%.15f')

WKID可以参考这里
地理坐标系WKID:地理坐标系
投影坐标系WKID:投影坐标系


对比下结果

在这里插入图片描述
在这里插入图片描述
小数点后面第四位才有变化基本是毫米的偏差。

参考

https://blog.csdn.net/sinat_28797501/article/details/75635439
https://blog.csdn.net/weixin_40575956/article/details/107288757

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值