一、数据采集与追踪模型设计
- 多平台数据采集框架
数据源整合:通过API接口抓取骑手在美团、京东等平台的接单记录(需平台开放数据接口或政府介入协调)35
核心字段:
python
Copy Code
示例数据结构
orders = {
‘骑手ID’: ‘encrypted_hash’, # 匿名化处理
‘平台名称’: [‘美团’, ‘京东’],
‘接单时间戳’: ‘2025-04-27 12:35:21’,
‘订单类型’: ‘餐饮/零售’,
‘工作时长’: 480, # 分钟
‘跨平台接单间隔’: 15, # 与上一单的时间差
‘奖惩标记’: [‘超时罚款’, ‘跨平台补贴’]
}
2. 动态追踪算法
异常行为检测:
通过时间序列分析识别骑手接单密度突变(如单日接单量下降50%以上)5
使用孤立森林算法检测异常派单模式(如优质订单突然消失)5
python
Copy Code
from sklearn.ensemble import IsolationForest
特征:近7日接单量、跨平台订单占比、超时率
model = IsolationForest(contamination=0.05).fit(X)
anomalies = model.predict(X)
二、二选一限制分析模块
- 隐性限制识别模型
指标类型 判断逻辑 数据来源
派单量衰减 连续3天同时间段接单量下降≥30%且无天气/节日干扰 平台派单日志5
补贴关联性 跨平台接单后特定平台补贴金额下降≥50% 骑手钱包数据5