第二弹:美团VS京东大战,如何通过大数据分析骑手是否被平台二选一,并追踪骑手收益影响

上一篇我们简单的分析了如何模拟分析美团与京东之间的竞争对骑手的一些影响,那这一篇我们通过系统性的思路,按照完整的一个模拟试题并解答的思路,对这一现状或者考题,进行系统性的分析,并列出相关解决方案路径,进行分析,希望对大家有所帮助。
在这里插入图片描述

在这里插入图片描述

以下为正文:

一、研究背景与目标

1.1 背景概述

2025 年,京东正式进军外卖市场,与美团展开激烈竞争。京东方面声称某平台强迫骑手“二选一”,即只能选择一个平台接单,否则可能面临限制单量、封号等处罚。美团则表示没有此类政策,骑手可以自由选择接单平台。

骑手群体作为外卖行业的核心劳动力,若遭受“二选一”政策的影响,不仅会影响个人收入,也可能影响整体外卖市场的公平竞争。如何利用数据分析客观判断这一问题,是本研究的核心目标。

1.2 研究目标

分析骑手是否受到“二选一”政策影响
量化“二选一”政策对骑手收入的影响
为平台及监管机构提供数据支持,优化市场竞争环境

1.3 研究意义

对于骑手:帮助骑手了解不同平台策略对其收益的影响,为接单决策提供数据支持。
对于监管部门:提供数据证据,评估外卖市场的公平竞争情况,防止不正当竞争行为。
对于平台:提供竞争策略优化建议,避免因政策限制导致骑手流失。

二、数据采集与预处理

2.1 数据来源

骑手订单数据:骑手每日订单量、接单时间、订单金额、配送距离、平台来源。
骑手账户数据:注册时间、等级、历史接单数据。
平台公告数据:美团和京东发布的相关政策信息。
用户评价数据:分析用户对骑手服务的评价,间接反映骑手的工作状态。

2.2 数据预处理

2.2.1 数据清洗

处理缺失值,如订单金额为空的情况,采用均值填充或删除异常数据。
统一时间格式,确保数据可用性。

2.2.2 数据整合

结合美团、京东数据,构建统一格式的数据集。
依据骑手 ID 匹配多平台订单信息。

2.2.3 特征工程

计算骑手每日 美团/京东订单比例。
计算 订单金额均值,用于分析收益变化。
计算 配送距离均值,查看是否因平台策略影响接单范围。

三、分析方法与具体步骤

3.1 骑手接单行为分析

3.1.1 时间序列分析

观察骑手在不同时间段的接单平台比例变化,识别是否有明显的订单倾斜。

3.1.2 聚类分析

使用 K-means 聚类分析骑手接单模式,区分“单平台骑手”和“多平台骑手”。

3.1.3 异常检测

识别在特定时间点突然减少另一平台接单的骑手,评估是否受政策影响。

3.2 收入影响评估

3.2.1 对比分析

比较政策实施前后骑手的平均收入变化趋势。

3.2.2 回归分析

使用回归模型分析接单平台比例对收入的影响。

3.3 可视化展示

3.3.1 数据图表展示

柱状图显示不同时间段的骑手平均收入。
折线图显示骑手接单平台比例的变化趋势。

3.3.2 地理位置分析

生成热力图,分析不同区域骑手的接单行为差异。

四、模型实现与代码

4.1 数据加载与清洗

import pandas as pd

# 读取数据
data = pd.read_csv('rider_orders.csv')

# 数据清洗
data.dropna(inplace=True)
data['date'] = pd.to_datetime(data['date'])

4.2 接单行为分析代码实现

import matplotlib.pyplot as plt

# 计算每日接单平台比例
daily_orders = data.groupby(['rider_id', 'date', 'platform']).size().unstack().fillna(0)
daily_orders['total'] = daily_orders.sum(axis=1)
daily_orders['platform_ratio'] = daily_orders['JD'] / daily_orders['total']

# 画出趋势图
plt.plot(daily_orders.index, daily_orders['platform_ratio'])
plt.title('骑手接单平台比例变化')
plt.show()

4.3 收入影响评估代码实现

import statsmodels.api as sm

# 计算收入
data['income'] = data['order_amount']
data['jd_ratio'] = data['JD_orders'] / data['total_orders']
X = data[['jd_ratio']]
y = data['income']
X = sm.add_constant(X)

# 回归分析
model = sm.OLS(y, X).fit()
print(model.summary())

4.4 可视化展示代码

import seaborn as sns

# 热力图
plt.figure(figsize=(10,6))
sns.heatmap(data.pivot_table(index='region', columns='date', values='order_count', aggfunc='sum'))
plt.title('骑手接单热力图')
plt.show()

五、结论与建议

5.1 研究结论

部分骑手的订单来源发生显著变化,可能受到“二选一”影响。
平台选择对骑手收入有显著影响。

5.2 未来优化方向

引入更多外部因素,如天气、节假日等变量,提高分析精度。

5.3 政策建议

平台:优化竞争策略,保障骑手自由接单。
监管:加强市场监管,防止不公平竞争行为。
骑手:提升服务质量,增强多平台接单能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱分享的小朋友

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值