推荐10个好用到爆的Jupyter Notebook插件,让你效率飞起

今天我来介绍几个在jupyter notebook中被广泛用到的插件,能够更好地帮助到大家进行数据分析与可视化,极大地提高日常的工作效率。喜欢记得点赞、收藏、关注。

注:更加技术交流、资料获取,文末获取

准备工作

首先我们先下载好插件选择的工具栏,通过pip install来进行下载即可

pip install jupyter_contrib_nbextensions

然后我们将这个插件选项的工具栏添加到jupyter notebook的页面当中,运行下面这个的命令行

jupyter contrib nbextension install

我们打开jupyter notebook页面之后就可以看到有Nbextensions这个工具栏,如下图所示

图片

下面小编来介绍几个自认为十分好用的插件

Hinterland

该插件的作用在于对代码有着自动填充的功能,对于很多程序员来说可以极大地提高编程效率,如下图所示

图片

Skip-Traceback

当我们所写的代码里面存在着例如语法错误等问题,一般jupyter notebook会报一大串错误,眼花缭乱的,该插件的作用就在于会省略很多繁杂、没有意义的错误提示,直接抛出问题的关键所在,如下图所示

图片

Live Markdown Preview

该插件的作用在于方便程序员以及开发者们撰写Markdown内容,如下图所示

图片

Highlighter

该插件的作用在于摘选出来的Markdown内容可以高亮显示出来,如下图所示

图片

Spell Checker

该插件的作用在于检查写的Markdown内容,拼写的语法错误、单词拼写是否准确,如下图所示

图片

Code prettify

有时候程序员写的代码都是杂乱无章的,该插件的作用在于可以重新格式化、美化自己写的代码块,并且支持多种语言包括PythonRJavaScript等等,如下图所示

图片

Codefolding

该插件的作用在于可以将自己写的代码块折叠起来,如下图所示

图片

Notify

有时候在jupyter notebook当中执行某个任务需要等待很长一段时间,该插件的作用在于任务执行完成的时候,会给你提示,如下图所示

图片

ExecuteTime

该插件的作用在于当代码块被执行的时候,显示出来代码块执行完成所需要的时间,如下图所示

图片

ScrollDown

当我们在打印for循环的时候,当输出的内容很多,该插件的作用在于会自动向下滚动输出内容,不需要人为地向下拖滚动条,如下图所示

图片

如果有不理解的地方可以自己动手尝试一下,也可以通过直接私信交流。感谢支持。

推荐文章

技术交流

欢迎转载、收藏、有所收获点赞支持一下!数据、代码可以找我获取

在这里插入图片描述

目前开通了技术交流群,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

  • 方式①、发送如下图片至微信,长按识别,后台回复:加群;
  • 方式②、添加微信号:dkl88191,备注:来自CSDN
  • 方式③、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

长按关注

### 推荐用于 Jupyter Notebook 的 AI 插件或扩展 #### 1. TensorBoard TensorFlow 提供了一个可视化工具 TensorBoard,它可以帮助用户监控训练过程、理解模型结构并调试潜在问题。通过集成到 Jupyter Notebook 中,可以在交互环境中轻松调用 TensorBoard 进行实验分析。 ```python %load_ext tensorboard import datetime, os !tensorboard --logdir=logs/fit ``` #### 2. Keras Callbacks with Live Visualization Keras 是一个流行的深度学习框架接口,其回调函数允许开发者在训练期间执行特定动作。一些第三方库提供了实时绘图功能来跟踪损失和准确性变化情况,这有助于快速调整超参数设置[^4]。 #### 3. Yellowbrick Visualizers Yellowbrick 结合 Scikit-Learn 和 Matplotlib 来创建丰富的机器学习视觉化效果。这些图表不仅限于评估指标图形表示法还包括特征重要性和聚类倾向等复杂概念解释。 #### 4. Plotly for Interactive Plots Plotly 支持构建高度互动的数据视图,在处理大规模多维数据集时尤为有用。对于从事自然语言处理 (NLP) 或计算机视觉项目的人员来说,这种类型的插件能极大地方便探索性数据分析工作流[^2]。 #### 5. jupyter-tensorflow-plugin 此插件旨在简化 TensorFlow 模型开发流程中的常见任务,比如自动补全 API 调用建议以及内置支持分布式计算等功能特性[^1]。 #### 6. nbdime for Git Integration 虽然不是直接针对 AI 应用程序设计,但是当团队协作开发基于 Python 编写的算法原型时非常有帮助。nbdime 可以更好地管理版本控制系统内的差异比较与合并操作[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值