自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 CNN经典网络之残差网络(ResNet)剖析

残差网络(Residual Network, ResNet)是在2015年继AlexNet、VGG、GoogleNet 三个经典的CNN网络之后提出的,并在ImageNet比赛classification任务上拔得头筹,ResNet因其简单又实用的优点,现已在检测,分割,识别等领域被广泛的应用。在VGG19中卷积层+全连接层达到19层,在GoogLeNet中网络史无前例的达到了22层。那么,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题:计算量大,时间长(通过

2020-10-19 11:43:22 6394

原创 透彻理解正则化(Regularization)

Regularization是在损失函数中加惩罚项,增加建模的模糊性,从而把捕捉到的趋势从局部细微趋势,调整到整体大概趋势。虽然一定程度上的放宽了建模要求,但是能有效防止over-fitting的问题,增加模型准确性。因此,regularization是针对模型而言。...

2020-10-19 11:42:43 285

原创 生成模型经典网络之DCGAN剖析

在原始的 GAN 模型中,生成器和判别器都是浅层模型 。 为了生成分辨率更高的图像,我们需要更深的模型 。 Indico公司的 Alec Radford 等人于 2016 年提出了 DCGAN ( Deep Convolutional GAN ,深度卷积对抗生成网络)模型 。 该模型中判别器和生成器都采用全卷积神经网络 。 除了判别器的最后一层和生成器的第一层之外,其他层都采用卷积层 。 该模型提升了 GAN 生成大尺度图像的能力,它在 LSUN (Large-sale Scene Understandin

2020-10-19 11:40:04 756

原创 损失函数可视化

对于mmm个样本,使用MSE最为损失函数。如果样本只有一个属性xix_ixi​,那么损失函数为:L=1m∑i(w∗xi+yi)2L=\frac{1}{m}\sum_i(w*x_i+y_i)^2L=m1​i∑​(w∗xi​+yi​)2我们来画出该损失函数的图像:import numpy as npimport matplotlib.pyplot as pltdef image(b=0): dense = 400 w = np.linspace(-2,4,dense) x_

2020-10-19 11:39:21 3490

原创 Feature Scaling

特征缩放(Feature Scaling)为什么要进行特征缩放?如果我们不进行处理,就去训练模型会怎么?训练模型实际是训练参数,如果我们采用梯度下降法,那么参数的更新公式是:∂L∂wi=2n∑j=0n((Hj−yj)∗xji)\frac{ \partial L}{\partial w_i}=\frac{2}{n}\sum_{j=0}^n\Bigl((H_j-y_j)*x_{ji}\Bigr)∂wi​∂L​=n2​∑j=0n​((Hj​−yj​)∗xji​)wi+1=wi−η∗∂L∂wiw_{i+1}

2020-10-19 11:37:59 292

原创 参数是如何更新的

参数是如何更新的二层模型你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;增加了 图片拖拽

2020-10-19 11:36:42 633

原创 各种RNN单元

RNN(Recurrent Neural Network, 循环神经网络)ReNN(Recursive Neural Network, 递归神经网络)如:(1) 我饿了,我要去食堂___。(2) 我饭卡丢了,我要去食堂___。很显然,第一句话是想表明去食堂就餐,而第二句则很有可能因为刚吃过饭,发现饭卡不见了,去食堂寻找饭卡。而RNN之前,我们常用的语言模型是N-Gram,无论何种语境,可能去食堂大概率匹配的是“吃饭”而不在乎之前的信息。RNN就解决了N-Gram的缺陷,它在理论上可以往前(后)看任意多

2020-10-19 11:35:34 1230

原创 AwesomeAI之图像超分(1)——RDN

原论文:Residual Dense Network for Image Super-Resolution数据集 DIV2KDIV2K中共有1000张2K分辨率图像。其中,训练用图像800张,验证用图像100张,测试用图像100张。如何从HR(High Resolution,高分辨率)得到LR(Low Resolution,低分辨率)图像?训练输入LR的图片使用该2k图片通过下面3种处理得到:BI方式:主要通过Bicubic下采样得到,缩小比例为x2,x3,x4;BD方式:先对原始图片做(7*7

2020-08-14 15:23:16 784

原创 生成模型经典网络之CGAN剖析

先要深刻理解GAN!CGAN(Conditional Generative Adversarial Nets, 条件生成-对抗网络)。借用原论文中的图如下:想一想,再GAN中我们哪里使用了“类别”?在GAN中,我们求损失函数的时候用到了“类别”,因为二分类器输出的是正样本的几率值(或概率值),所以这里“类别”就用来作为判断用,如果是类别1,计算log(D(xj))log(D(x_j))log(D(xj​));如果是类别0,计算log(1−D(xj))log(1-D(x_j))log(1−D(xj​)

2020-08-10 16:16:29 1911

原创 生成模型经典网络之GAN剖析

GAN启发自博弈论中的二人零和博弈。GAN是由两部分主成:生成模型GGG(generative model)和判别模型DDD(discriminative model)。生成模型捕捉样本数据的分布,判别模型是一个二分类器,判别输入是真实数据还是生成的样本。xxx是真实数据,真实数据服从Pdata(x)P_{data}(x)Pdata​(x)分布。zzz是噪声数据,噪声数据服从Pz(z)P_z(z)Pz​(z)分布,比如高斯分布或者均匀分布。然后从噪声zzz进行抽样,通过GGG之后生成假数据xˉ=G(z)\

2020-08-10 10:19:54 318

原创 CNN经典网络之AlexNet剖析

AlexNet剖析

2020-08-02 16:28:25 159

原创 理解并画出张量

理解张量理解标量(Scalar)、向量(Vector)、矩阵(Matrix)、数据立方(Cube)、张量(Tensor)、数组(Array):标量是0阶张量,0维度数组;向量是1阶张量,1维度数组;矩阵是2阶张量,2维度数组;数据立方体是3阶张量,3维度数组。张量=数组,张量的阶=数组的维度。理解阶(rank)、维(dimension)、轴(axis)、形状(shape)、通道(channel)一个例子说明问题:a=[[[1,2,3],[4,5,6]]]1、这是一个几维数组或几阶张量?数

2020-08-02 16:13:32 914

原创 CNN经典网络之VGG剖析

AlexNet》 VGG 》 Inception 》 ResNet 》 Inception-ResNet 》 ResNeXt 》 DenseNet 》DPN ( Dual Path Network )牛津大学的研究人员于2014年提出了VGG模型,旨在提供比AlexNet更深的模型以提升图像分类精度。牛津大学的研究人员发现采用3×3卷积核的卷积操作已经能够很好地提取图像特征,所以他们大量的使用了卷积操作,所以VGG的一大特征就是卷积操作很多。VGG16第一层:卷积操作:  input=(N,2

2020-08-01 12:14:25 360

原创 Kafka剖析

Kafaka源码剖析

2020-07-28 16:09:24 241

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除