直播疑难杂症排查(10)— 直播功耗高

本文深入探讨直播过程中手机发热及耗电快的问题,从数据量、格式转换、图像操作、软编软解等方面分析功耗高的原因,并提出针对性优化建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为 《直播疑难杂症排查系列的》第十篇文章,我们重点看看直播功耗高的问题。

1. 问题现象

直播过程中手机发热严重,耗电快。

2. 问题排查

导致手机功耗高,发热严重的根本因素,无外乎就是一点:CPU/GPU 占用率高,所以,我们首先要分析下,哪些因素会导致 CPU/GPU 占用率高。

2.1 数据量太大
直播主要由:视频采集 -> 视频处理(剪裁、美颜、滤镜) -> 编码 -> 推流 这些环节组成。

在这整个流程中,决定数据量大小的因素有哪些呢 ?

  • 视频的尺寸(例如:1280 x 720 的图像,明显要比 320 x 240 的图像处理起来费劲)
  • 视频的帧率(例如:每秒 30 帧,明显要比每秒 15 帧,处理起来费劲)

因此,在不影响业务体验的情况下,适当减少视频的尺寸和帧率,是可以明显降低后续环节 CPU/GPU 的负荷的,从而显著降低功耗。

2.2 大量的格式转换

不同的模块对数据格式的要求,往往有差异,比如 Android 摄像头出来的数据大多是 NV21 的,而编码器一般要求 I420 格式的数据;再比如 ffmpeg 解码的视频往往是 YUV 格式,而渲染显示往往需要 RGB 格式,等等。

我们要尽可能减少不同格式之间的数据转换,或者尽可能利用 GPU 来处理一些复杂的格式转换,比如利用 OpenGL 直接渲染 YUV 格式的数据,而不是用 CPU 做一次 YUV -> RGB 的转换,就是一个不错的选择。

2.3 对图像进行放大操作

《直播疑难杂症排查(6)— 马赛克严重》这篇文章有提到,非常不推荐把一个小尺寸的图片 -> 放大 -> 大尺寸图片,这样很容易出现马赛克。

其实,这样的设计,不仅仅是容易出现马赛克,而且在图像放大的过程中,由于涉及到复杂的插值运算,也会非常消耗 CPU。
同理,图像的缩小或者剪裁,同样也会消耗一定的 CPU,只不过相比于图片放大要好点。
因此,最好的办法,就是小心选择摄像头的预览分辨率以及推流的尺寸,尽可能让两者保持一致,这样,才能最大化地节省 CPU 的消耗。

2.4 软编/软解

这个原因或许大家都懂,软编/软解靠的是 CPU,非常耗性能,而硬编/硬解是使用专门的硬件编×××模块,会显著降低 CPU 的负担,相对而言,会省电很多。

只不过需要小心各种 Android 机型兼容性问题,对于某些奇葩设备,还是加入硬编/硬解黑名单的好。

2.5 其他方面

当然,导致功耗高的因素还有很多,这里就不一一展开说明了,列举如下:

  • 人脸识别/美颜/滤镜,对 CPU/GPU 消耗很大

  • 代码逻辑中过多的 memory copy 操作

  • 后台线程频繁唤醒手机访问网络或者读写 SDCard

  • App 的一些动画特效

  • 其他等等

3. 小结

关于功耗高的问题排查大致就介绍道这里了。

转载于:https://blog.51cto.com/ticktick/1940713

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值