object recognition目标识别
PASCAL Visual Object Challenge 20类
机器学习算法:图模型、SVM、AdaBoost都很容易过拟合,因为数据维度太高,参数需要优化,训练数据集不足
ImageNet:WordNet字典进行排序,22k类别,14m图片
挑战赛:1k类,1.4m图片
top5:输出概率最大的五个类别中有正确的对象认为识别成功
应用:目标检测、行为分类、图像注释image captioning
2012年CNN,2015 Residual Network残差网络 152层
Numpy:数值计算,向量化张量
数据驱动策略:训练函数,预测函数
KNN
L1距离:曼哈顿距离,距离绝对值的和,适用于某些值有特殊意义
L2距离:欧式距离,平方和的平方根,适用于空间中的通用向量
nearest neighbor classifier:最近邻算法,训练复杂度O(1),预测复杂度O(n)
k-nearest neighbors:k近邻算法,根据距离找到最近的k个点,由投票结果作预测,k值越大越平滑(加权)
超参数不一定能从训练数据中学习到,既不要选择仅在训练集上表现良好的超参,也不要选择只在测试集上表现良好的超参
在小数据集上采用k折交叉验证
统计学假设:数据互相独立,服从同一分布
L1依赖于坐标系统,向量中的元素代表不同特