CS231N课程笔记

本文介绍了目标识别的挑战和ImageNet数据集,强调了深度学习在图像识别中的作用,特别是2012年的CNN和2015年的Residual Networks。讨论了机器学习算法、数据驱动策略、KNN算法、损失函数、正则化以及CNN和RNN在网络架构中的应用,还涵盖了梯度爆炸和消失问题、LSTM以及生成式模型如GANs。
摘要由CSDN通过智能技术生成

object recognition目标识别

PASCAL Visual Object Challenge 20类

机器学习算法:图模型、SVM、AdaBoost都很容易过拟合,因为数据维度太高,参数需要优化,训练数据集不足

ImageNet:WordNet字典进行排序,22k类别,14m图片

挑战赛:1k类,1.4m图片

top5:输出概率最大的五个类别中有正确的对象认为识别成功

应用:目标检测、行为分类、图像注释image captioning

2012年CNN,2015 Residual Network残差网络 152层

Numpy:数值计算,向量化张量

数据驱动策略:训练函数,预测函数

KNN

L1距离:曼哈顿距离,距离绝对值的和,适用于某些值有特殊意义

L2距离:欧式距离,平方和的平方根,适用于空间中的通用向量

nearest neighbor classifier:最近邻算法,训练复杂度O(1),预测复杂度O(n)

k-nearest neighbors:k近邻算法,根据距离找到最近的k个点,由投票结果作预测,k值越大越平滑(加权)

超参数不一定能从训练数据中学习到,既不要选择仅在训练集上表现良好的超参,也不要选择只在测试集上表现良好的超参

在小数据集上采用k折交叉验证

统计学假设:数据互相独立,服从同一分布

L1依赖于坐标系统,向量中的元素代表不同特

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值