滑动窗口问题。

博客探讨了滑动窗口在数据结构中的应用,特别是如何使用单调下降的双端队列来解决寻找窗口最大值的问题。文章强调了明确变量含义、处理特殊测试用例的重要性,并通过1151题的例子说明滑动窗口如何解决最少交换次数的问题,将问题转化为寻找特定大小窗口中0的个数。
摘要由CSDN通过智能技术生成

数据结构:

单调下降的双端队列 ——》窗口的最大值

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        deque <int> MaxWindow;
        vector<int> res;

        if(nums.empty()) return res;
        if(k == 1) return nums;

        for(int i = 0; i < nums.size(); i++){
            // windows i - k  + 1 ~ i
            if(MaxWindow.empty()){
                MaxWindow.push_back(i);
                continue;
            }
            // 判断 窗口内最大元素是不是有效
            if(i - MaxWindow.front() >= k) MaxWindow.pop_front();
            // 当前 将所有不可能的成为最大值的数弹出 保证窗口最前端就是当前窗口的最大值
            while(!MaxWindow.empty() && nums[i] >= nums[ MaxWindow.back()]){
                MaxWindow.pop_back();
            }
            MaxWindow.push_back(i);

            if(i >= k - 1 ){
                res.push_back(nums[MaxWindow.front()]);
            }
        }
        return res;
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值