【Papers】利用伪标签进行半监督遥感图像分割

研究探讨了半监督学习在遥感图像分割中的应用,通过一致性正则化、伪标签平均更新以及边界敏感网络,有效利用未标记数据提升精度。文章涉及建筑提取、高分辨率图像处理和实例分割等领域的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. Semi-Supervised Remote Sensing Image Semantic Segmentation via Consistency Regularization and Average Update of Pseudo-Label

    • 作者: Jiaxin Wang, C. Ding, Sibao Chen, Chenggang He, Bin Luo
    • 摘要: 本文探讨了半监督学习方法,并合理利用大量未标记的数据来提高遥感图像分割的性能。提出了一种基于半监督学习的遥感图像分割方法,首先设计了一种一致性正则化(CR)训练方法,然后使用新学习的模型进行伪标签的平均更新,并最终结合伪标签和强标签来训练语义分割网络。
    • 引用次数: 36
    • PDF链接
  2. On the Effectiveness of Weakly Supervised Semantic Segmentation for Building Extraction From High-Resolution Remote Sensing Imagery

    • 作者: Zhenshi Li, Xue-liang Zhang, P. Xiao, Zixian Zheng
    • 摘要: 本研究以建筑提取为例,关注如何有效地将弱监督语义分割(WSSS)应用于高分辨率遥感(HR)图像。采用了广泛使用的两步WSSS框架,首先从图像级标签生成伪掩码,然后用伪掩码训练分割网络。
    • 引用次数: 23
    • PDF链接
  3. BAS 4 ^{4} 4Net: Boundary-Aware Semi-Supervised Semantic Segmentation Network for Very High Resolution Remote Sensing Images

    • 作者: Xian Sun, Aijun Shi, Hai Huang, H. Mayer
    • 摘要: 本文提出了一种称为BAS4Net的框架,可以在不增加额外注释工作量的情况下获得更精确的分割结果,特别是在对象边界处。该框架通过平衡语义和空间信息,并加权具有丰富语义边界信息的特征来减轻边界模糊。
    • 引用次数: 20
    • PDF链接
  4. Semi-Supervised Segmentation for Coastal Monitoring Seagrass Using RPA Imagery

    • 作者: B. Hobley, R. Arosio, Geoffrey French, J. Bremner, T. Dolphin, Michal Mackiewicz
    • 摘要: 本研究比较了用于分类潮间带海草栖息地的两种分析方法:基于对象的图像分析(OBIA)和完全卷积神经网络(FCNNs)。该工作展示了FCNNs在半监督设置中的实用性,用于从英格兰北安伯兰郡Budle Bay的光学无人机调查中绘制海草和其他沿海特征的地图。
    • 引用次数: 13
    • PDF链接
      以下是关于利用伪标签进行半监督遥感图像分割的引用率较高的论文的继续列表:
  5. Semi-/Weakly-Supervised Semantic Segmentation Method and Its Application for Coastal Aquaculture Areas Based on Multi-Source Remote Sensing Images - Taking the Fujian Coastal Area (Mainly Sanduo) as an Example

    • 作者: Chenbin Liang, Bo Cheng, Baihua Xiao, Chenlinqiu He, Xunan Liu, Ning Jia, Jinfen Chen
    • 摘要: 本文提出了一种新颖的半监督/弱监督方法,用于提取基于多源遥感图像的沿海养殖区域,并通过实验全面分析了模型的提取效果。
    • 引用次数: 10
    • PDF链接
  6. Building Extraction from Very-High-Resolution Remote Sensing Images Using Semi-Supervised Semantic Edge Detection

    • 作者: Liegang Xia, Xiongbo Zhang, Junxia Zhang, Haiping Yang, Ting Chen
    • 摘要: 本研究提出了一种基于边缘检测网络的半监督深度学习方法,用于从高分辨率遥感图像中提取建筑物屋顶边界。该方法使用少量标记样本和丰富的未标记图像进行联合训练。
    • 引用次数: 8
    • PDF链接
  7. Active Learning for Improved Semi-Supervised Semantic Segmentation in Satellite Images

    • 作者: S. Desai, Debasmita Ghose
    • 摘要: 由于遥感图像领域高质量标记训练数据的缺乏,本文提出了一种基于主动学习的采样策略,用于选择高度代表性的标记训练数据集。该方法在两个现有的卫星图像语义分割数据集上展示了有效性。
    • 引用次数: 8
    • PDF链接
  8. ClassHyPer: ClassMix-Based Hybrid Perturbations for Deep Semi-Supervised Semantic Segmentation of Remote Sensing Imagery

    • 作者: Yongjun He, Jinfei Wang, C. Liao, Bo Shan, Xin Zhou
    • 摘要: 本研究从数据和模型级别的扰动角度全面分析了基于一致性正则化的半监督学习(SSL)方法,并引入了一种端到端的SSL方法,以提高深度学习模型在有限标签数量下的性能。
    • 引用次数: 7
    • PDF链接

以上是关于利用伪标签进行半监督遥感图像分割的引用率较高的论文的前8篇。由于搜索结果限制,我将继续搜索以获取剩余的2篇论文。

以下是关于利用伪标签进行半监督遥感图像分割的引用率较高的论文的完整列表的最后两篇:

  1. Bounding Box-Free Instance Segmentation Using Semi-Supervised Learning for Generating a City-Scale Vehicle Dataset

    • 作者: O. Carvalho, Osmar Ab’ilio de Carvalho J’unior, Anesmar Olino de Albuquerque, N. C. Santana, D. Borges, R. Gomes, R. Guimarães
    • 摘要: 本研究提出了一种无边界框的实例分割方法,使用半监督学习生成城市规模的车辆数据集。该方法考虑了车辆内部和车辆边界,并使用U-net与Efficient-net-B7骨干网络的深度学习模型。
    • 引用次数: 7
    • PDF链接
  2. SemiSANet: A Semi-Supervised High-Resolution Remote Sensing Image Change Detection Model Using Siamese Networks with Graph Attention

  • 作者: Chengzhen Sun, Jiangjiang Wu, Hao Chen, C. Du
  • 摘要: 本文提出了一种基于一致性正则化和强增强的简单半监督变化检测方法。该方法首先使用少量标记数据预训练一个带有图注意力机制的连体嵌套UNet(SANet),然后使用未标记数据和置信度阈值过滤器获取高置信度的伪标签。
  • 引用次数: 6
  • PDF链接
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值