VQA数据集调研报告

本文详细介绍了VQA数据集的组成部分,包括训练集、验证集和测试集的规模和用途,以及与问题和注释相关的数据集。VQA2.0版本解决了答案不平衡的问题,强调了视觉特征的重要性。此外,还提及了Visual Genome数据集的构建过程和特点,以及Wordnet在数据集中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VQA数据集调研报告

2018316

14:22

一、VQA数据集


1.与问题相关的数据集(related to questions)

1.1.训练集(training set)

(1)基本情况介绍:

name:v2_OpenEnded_mscoco_train2014_questions.json

size:40M

version: 2.0

year: 2017

contributor: VQA Team

date by created: 2017-04-26 17:07:13

task type: Open-Ended

data type: mscoco

url: http://visualqa.org

(2)形式(eg):

Name

Type 类型

Description 描述

image_id

int

图片ID

question_id

 

问题的ID

question

str

图片对应的问题

{"image_id": 458752,"question": "What is this photo taken looking through?","question_id": 458752000},{"image_id": 458752, "question": "What position isthis man playing?", "question_id": 458752001},{"image_id": 458752, "question": "What color is theplayers shirt?", "question_id": 458752002},{"image_id": 458752, "question": "Is this man aprofessional baseball player?", "question_id": 458752003}

(3)每张图片有一个编号,每张图片对应有若干个不同的问题,每个问题有一个编号,问题编号在图片编号的基础上增加三位,依次编为xxxxxx000,xxxxxx001 ...等等。

1.2.验证集(val)

(1)基本情况:除size为19.3M外其他情况同上

(2)形式:同上

1.3.测试集(test)

(1)开发测试集:除size为9.57M外其他同上

(2)测试集:除size为39.8M外其他同上

eg:{"image_id": 1, "question":"What is the fence made of?", "question_id": 1000},{"image_id": 1, "question": "What color is thetruck?", "question_id": 1001}, {"image_

OCR-VQA(Optical Character Recognition - Visual Question Answering)数据集评估指标可以根据任务的性质和目标进行选择。以下是一些常用的评估指标: 1. 准确率(Accuracy):在OCR-VQA任务中,最常用的评估指标是准确率。它衡量模型回答问题的正确率。如果模型给出的答案与人工标注的答案完全匹配,则计为1,否则计为0。最终的准确率是所有样本的平均值。 2. Top-k Accuracy:为了考虑到可能存在多个正确答案的情况,可以使用Top-k准确率。在Top-k准确率中,将模型预测的答案与人工标注的答案进行比较,只要模型预测的答案在标注答案的前k个里面,就认为是正确的。Top-k准确率可以更全面地评估模型的性能。 3. 结果排序(Ranking):在OCR-VQA任务中,还可以使用排序评估指标,例如Mean Rank和Median Rank。这些指标衡量模型在给定问题下对所有可能答案的排序性能。较好的模型应该能够将正确答案排在前面。 4. 分布式评估(Distributional Evaluation):除了对单个样本的准确性进行评估,还可以考虑模型对整个标注答案分布的拟合程度。例如,模型的预测分布应与人工标注的分布相似,可以使用KL散度或交叉熵等指标进行评估。 这些指标可以根据具体的OCR-VQA任务和评估需求进行选择和组合。同时,还可以根据任务的特点,设计和使用更加适合的评估指标。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值