利用Python进行数据初步处理


import pandas as pd

df = pd.read_csv('路径/文件名') # 读取数据


# 查看数据信息

print(df.info())
print(df.describe())
print(df.head())    #查看表头
print(df.shape)     #查看行列
print(df.dtypes)    #查看数据类型
print(df["x-box"].hist())   #查看变量分布
print(df.isnull().sum())    #查看每一列缺失值情况
print(df.isnull().sum(axis=1))  #查看每一行缺失值情况
print(df["high"].value_counts())    #查看 high 这一列的值统计
print(df['high'].unique())      #查看 high 这一列数据有哪些不同的取值

# 查看特征相关性 df.corr()   皮尔森相关系数
df.corr()


# 数据预处理

# 缺失值填充
df.fillna(df.mode().iloc[0],inplace=True) #众数填充,inplace=True,修改应用于df
df.fillna(df.median()) # 中位数填充
df["high"][df.age.isnull()] = "0"  #对某一列填充


# Imputer填充缺失值
from sklearn.preprocessing import Imputer
names = list(df.columns)
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)  # axis=0 用该列的其余数值的平均值填充空值,按行往下进行
imp2 = Imputer(missing_values='NaN', strategy='median', axis=0)
imp3 = Imputer(missing_values='NaN', strategy='most_frequent', axis=0)
df = imp.fit_transform(df) # 处理后的表为numpy格式,并且没有列名
df = pd.DataFrame(df,columns=names) # 转换成pandas格式,添加列名


# 删除不需要的字段
df.drop(['id', 'uid'], axis=1, inplace=True) # 删除id,uid字段


# 亚编码:pandas内置方法
sex = pd.get_dummies(df['性别'])  # 亚编码
# 将原表中 性别 字段删除,拼接上亚编码以后的表,形成一个新的表
df = pd.concat([df.drop(['性别'], axis=1), sex], axis=1)


# rank()函数
df['high']=df['high'].rank()

# 连续特征离散化
df['high2']=pd.cut(df['high'],bins=[0,5,10,15,20]).astype('str')
# 连续特征按照给定的范围进行切割分类,切割以后转换成str类型的数据
df['high2']=LabelEncoder().fit_transform(df['high2'])
# 对切割后的不同范围的数据进行编码


# 降维
# PCA降维
from sklearn.decomposition import PCA
pca = PCA(n_components=2) # n_components保留维度数
pca.fit(x_test)
# LDA降维
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis(n_components=2)
lda.fit(x_test, y_test)
lda.transform(x_test)

### 回答1: 利用Python进行数据分析,首先需要准备数据集。数据集可以来源于多种途径,比如网页爬取、数据库查询、文件导入等等。在数据集准备好后,就可以通过Python中的数据分析库进行数据处理和分析。 Python中最常用的数据分析库是Pandas和Numpy。Pandas提供了丰富的数据结构和数据处理函数,可以对数据进行清洗、过滤、转换等操作。Numpy是Python中的数值计算库,提供了大量的数学和统计函数,可以方便地进行数据分析和计算。 首先,我们可以使用Pandas将数据集导入到Python中。Pandas提供了多种数据导入函数,比如read_csv、read_excel等,可以根据数据集的格式选择合适的函数进行导入。 导入数据后,我们可以使用Pandas对数据进行初步处理和探索。比如查看数据的基本信息,包括数据的列名、数据类型、缺失值等。可以使用head()函数查看数据的前几行,使用describe()函数查看数据的统计特征。 接下来,我们可以使用Pandas和Numpy进行数据清洗和转换。比如,对于缺失值可以选择删除或填充;对于异常值可以选择删除或修复;可以进行数据类型的转换;可以进行数据的标准化或归一化等。 之后,我们可以使用Pandas和Numpy进行数据分析。比如,使用groupby()函数进行数据分组和聚合,使用plot()函数进行数据可视化,使用统计函数进行数据分析等。还可以使用其他的数据分析库,比如Matplotlib和Seaborn进行高级的数据可视化。 最后,我们可以使用Python中的其他库进行更深入的数据分析。比如,可以使用Scikit-learn进行机器学习模型的建立和训练;可以使用TensorFlow进行深度学习模型的开发和调优等。 总之,利用Python进行数据分析需要先导入数据集,然后使用Pandas和Numpy进行数据处理和转换,最后使用其他的数据分析库进行更深入的数据分析。Python提供了丰富的数据分析工具和库,可以满足各种需求。 ### 回答2: 利用Python进行数据分析有许多方法和技术,以下是一些常用的数据分析工具和技巧。 首先,Python有很多强大的数据分析库,如NumPy、Pandas和Matplotlib。NumPy提供了高效的数值计算工具,可以进行向量化操作和高性能的数组处理。Pandas是一个用于数据结构和数据分析的库,可以方便地进行数据清洗、处理和操作。Matplotlib则是一个用于画图和可视化的库,可以将数据可视化为柱状图、散点图等。 其次,Python提供了很多统计学方法和技术,如描述统计、假设检验和回归分析等。使用Python进行描述统计可以计算数据的中心趋势和离散程度,如均值、中位数和标准差;使用假设检验可以检验数据之间是否存在显著差异;使用回归分析可以探索变量之间的关系和预测结果。 另外,Python还提供了机器学习算法和工具,如线性回归、决策树和聚类等。机器学习是一种通过训练数据来建立模型并进行预测的方法,可以用来解决分类、回归和聚类等问题。Python中的一些机器学习库如Scikit-learn和TensorFlow,提供了丰富的机器学习算法和工具,方便进行数据挖掘和预测分析。 最后,Python还有一些数据分析的框架和平台,如Jupyter Notebook和Anaconda。Jupyter Notebook是一个交互式的数据分析环境,可以通过代码、文字和图像组合成一个文档,方便数据分析的展示和共享。Anaconda是一个Python科学计算的发行版,集成了许多常用的数据分析库和工具,方便安装和管理。 综上所述,利用Python进行数据分析可以通过强大的数据分析库、统计学方法和技术、机器学习算法和工具以及数据分析的框架和平台来实现。Python的简洁易学、丰富的库和工具生态系统,使其成为数据分析的首选语言之一。 ### 回答3: 利用Python进行数据分析有很多优点,首先Python是一种开源的编程语言,具有用户友好的语法和丰富的数据处理工具包,如NumPy、Pandas和Matplotlib等。这些工具使我们能够高效地处理和分析大量数据。 在进行数据分析时,首先需要加载数据集。Python提供了多种数据加载和处理方法,例如可以使用`pandas`库中的`read_csv()`函数加载CSV文件,或者使用`pandas`的`read_excel()`函数加载Excel文件。这样我们就可以在Python中轻松地获取数据集了。 一旦数据集被加载,我们就可以使用Python进行各种数据分析任务。例如,我们可以使用`pandas`库来清洗和处理数据,如删除重复数据处理缺失值、拆分或组合列等。`pandas`还提供了各种统计函数,如求和、均值、中位数等,方便我们对数据进行描述性统计分析。 除了`pandas`外,Python还有其他强大的数据分析库,如`NumPy`和`SciPy`,它们提供了许多数学和科学计算函数,可以用于进行数据处理、聚类分析、回归分析等。 在数据分析中,可视化也是非常重要的一部分。Python的`Matplotlib`和`Seaborn`库提供了丰富的数据可视化工具,我们可以使用这些库来创建直方图、散点图、条形图等各种图表,以便更好地理解和展示数据。 总之,利用Python进行数据分析可以帮助我们更高效地处理和分析大量数据,并且通过可视化工具可以更好地展示分析结果。无论是学术研究还是商业决策,Python都是一个非常强大的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值