公钥密码学 Miller-Rabin算法(素性测试)

Problem

Test all odd numbers in the range from 233 to 241 for primality using the Miller-Rabin test with base 2.

 

Answer:

test  n=233

  • 233-1=2^3 * 29, thus k=3, q=29
  • a^q mod n=2^29 mod 233=1
  • test returns"inconclusive"(probably prime)

 

test n=235

  • 235-1=2^1 * 117 ,thus k=1 q=117
  • a^q mod n=2^117 mod 235=192
  • 192!=1 and 192!=235-1
  • test returns "composite"

 

test n=237

  • 237-1=2^2 * 59, thus k=2, q=59
  • a^q mod n=2^59 mod 237=167!=1
  • 167!=237-1
  • 167^2 mod 237=160!=237-1
  • test returns "composite"

 

test n=239

  • 239-1=2^1 * 119
  • 2^119 mod 239=1
  • test returns "inconclusive"(probably prime)

 

test n=241

  • 241-1=2^4 *15
  • 2^15 mod 241=233
  • 233^2 mod 241=64
  • 64^2 mod 241=240=241-1
  • test returns "inconclusive"(probably prime)

 

问题思考

为什么237测试两遍就停了?为什么不继续往下平方测试

看K的值就知道了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值