Input():用来实例化一个keras张量
Input(shape=None,batch_shape=None,name=None,dtype=K.floatx(),sparse=False,tensor=None)
#参数:
shape: 形状元组(整型),不包括batch size。for instance, shape=(32,) 表示了预期的输入将是一批32维的向量。
batch_shape: 形状元组(整型),包括了batch size。for instance, batch_shape=(10,32)表示了预期的输入将是10个32维向量的批次。
name: 对于该层是可选的名字字符串。在一个模型中是独一无二的(同一个名字不能复用2次)。如果name没有被特指将会自动生成。
dtype: 预期的输入数据类型
sparse: 特定的布尔值,占位符是否为sparse
tensor: 可选的存在的向量包装到Input层,如果设置了,该层将不会创建一个占位张量。
#返回 一个张量
image_input = Input(shape=(None, None, input_shape[2]))#input_shape= (416, 416, 1),
model_body = tiny_yolo_body(image_input, num_anchors//2, num_classes)