问题描述
如下图所示,3 x 3 的格子中填写了一些整数。
+--*--+--+
|10* 1|52|
+--****--+
|20|30* 1|
*******--+
| 1| 2| 3|
+--+--+--+
|10* 1|52|
+--****--+
|20|30* 1|
*******--+
| 1| 2| 3|
+--+--+--+
我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是60。
本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。
如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。
如果无法分割,则输出 0。
输入格式
程序先读入两个整数 m n 用空格分割 (m,n<10)。
表示表格的宽度和高度。
接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000。
输出格式
输出一个整数,表示在所有解中,包含左上角的分割区可能包含的最小的格子数目。
样例输入1
3 3
10 1 52
20 30 1
1 2 3
10 1 52
20 30 1
1 2 3
样例输出1
3
样例输入2
4 3
1 1 1 1
1 30 80 2
1 1 1 100
1 1 1 1
1 30 80 2
1 1 1 100
样例输出2
10
import java.util.Scanner;
public class Main {
static int n, m; //注意这里输入n,m但是表示的是m行n列
static int gezi[][];
static int min = 100;
public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
m = scanner.nextInt();
n = scanner.nextInt();
gezi = new int[n][m];
int value[][] = new int[n][m];
int sum = 0;
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
gezi[i][j] = scanner.nextInt();
sum += gezi[i][j];
}
}
cal(0, 0, sum / 2, 0, value);
System.out.println(min);
scanner.close();
}
private static Boolean cal(int nn, int mm, int s, int c, int[][] value) {
// TODO Auto-generated method stub
if(s < 0){
return false;
}
if(s == 0){
if(c < min){
min = c;
}
return true;
}
if(mm < m && nn < n && mm >= 0 && nn >= 0){
if(value[nn][mm] == 0){
s -= gezi[nn][mm];
value[nn][mm] = 1;
c++;
cal(nn + 1, mm, s, c, value);
cal(nn - 1, mm, s, c, value);
cal(nn, mm + 1, s, c, value);
cal(nn, mm - 1, s, c, value);
value[nn][mm] = 0;
}
}
return false;
}
}