约定:
import pandas as pd
import numpy as np
时间序列
上节介绍的Timestamp、Period和Timedelta对象都是单个值,这些值都可以放在索引或数据中。作为索引的时间序列有:DatetimeIndex、PeriodIndex和TimedeltaIndex,它们都可以作为Series和DataFrame的索引。
一、创建DatetimeIndex、PeriodIndex和TimedeltaIndex时间序列
- 调用pd.date_range()创建DatetimeIndex序列:
index=pd.date_range("2018-03-17","2018-03-30",freq="2H")
loc=np.random.choice(np.arange(len(index)),size=4,replace=False)#随机选取4个互不相同的数
loc.sort()
ts_index=index[loc]
ts_index
代码结果:
DatetimeIndex(['2018-03-17 14:00:00', '2018-03-18 08:00:00',
'2018-03-25 00:00:00', '2018-03-27 22:00:00'],
dtype='datetime64[ns]', freq=None)
- 通过.to_period()将DatetimeIndex序列转换为PeriodIndex序列:
pd_index=ts_index.to_period("D")
pd_index
代码结果:
PeriodIndex(['2018-03-17', '2018-03-18', '2018-03-25', '2018-03-27'], dtype='period[D]', freq='D')
- 将DetetimeIndex序列转换为TimedeltaIndex序列:
longseconds=np.diff(ts_index)
td_index=pd.TimedeltaIndex(longseconds)
td_index
代码结果:
TimedeltaIndex(['0 days 18:00:00', '6 days 16:00:00', '2 days 22:00:00'], dtype='timedelta64[ns]', freq=None)
- 三者提供了许多与时间有关的属性:
ts_index.weekday
代码结果:
Int64Index([5, 6, 6, 1], dtype='int64')
pd_index.month
代码结果:
Int64Index([3, 3, 3, 3], dtype='int64')
td_index.seconds
代码结果:
Int64Index([64800, 57600, 79200], dtype='int64')
- 通过DatetimeIndex.shift()移动时间点:
ts_index.shift(2,"2H")
代码结果:
DatetimeIndex(['2018-03-17 18:00:00', '2018-03-18 12:00:00',
'2018-03-25 04:00:00', '2018-03-28 02:00:00'],
dtype='datetime64[ns]', freq=None)
- 通过DatetimeIndex.normalize()将时刻修改为当天的凌晨零点:
ts_index.normalize()
代码结果:
DatetimeIndex(['2018-03-17', '2018-03-18', '2018-03-25', '2018-03-27'], dtype='datetime64[ns]', freq=None)
二、将时间序列作为索引
TimestampIndex,PeriodIndex和TimedeltaIndex都可以作为Series、Dataframe对象的索引和列,在此只介绍一种。
- 作为Series对象的索引:
ts_series=pd.Series(range(4),index=ts_index)
ts_series
代码结果:
2018-03-17 14:00:00 0
2018-03-18 08:00:00 1
2018-03-25 00:00:00 2
2018-03-27 22:00:00 3
dtype: int32
- 通过between_time()返回位于指定时间段的数据集:
ts_series.between_time("7:00","17:00")
代码结果:
2018-03-17 14:00:00 0
2018-03-18 08:00:00 1
dtype: int32
- 通过tshift()将索引移动指定的时间:
ts_series.tshift(1,"2D")
代码结果:
2018-03-19 14:00:00 0
2018-03-20 08:00:00 1
2018-03-27 00:00:00 2
2018-03-29 22:00:00 3
dtype: int32
- 作为Seires的列:
ts_data=pd.Series(ts_index)
ts_data
代码结果:
0 2018-03-17 14:00:00
1 2018-03-18 08:00:00
2 2018-03-25 00:00:00
3 2018-03-27 22:00:00
dtype: datetime64[ns]
- 通过属性dt调用时间属性:
ts_data.dt.hour
代码结果:
0 14
1 8
2 0
3 22
dtype: int64
谢谢大家的浏览,
希望我的努力能帮助到您,
共勉!