MySQL索引之联合索引

本文详细介绍了MySQL中的联合索引原理,包括其存储结构、查询流程以及最左前缀匹配原则。联合索引在多条件查询时提高效率,其B+Tree结构基于最左字段排序。最左前缀匹配原则说明了在查询时如何有效利用索引。此外,文章还讨论了索引下推优化(Index Condition Pushdown, ICP)在MySQL 5.6后的应用,减少了回表次数,提高了查询效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 联合索引

在平时开发中,我们最常见的是聚集索引,但在我们需要多条件查询的时候,就不得不建立联合索引,来提高我们的查询效率

  • 联合索引:也称复合索引,就是建立在多个字段上的索引。联合索引的数据结构依然是 B+ Tree
  • 一颗 B+ Tree 只能根据一个值来构建,所以联合索引使用 最左 的字段来构建 B+ Tree

1.1. 联合索引的存储结构

如下图所示,表的数据如右图,ID 为主键,创建的联合索引为 (A,B),注意联合索引顺序,左图是模拟的联合索引的 B+ Tree 存储结构
在这里插入图片描述

  • 叶子节点是线性排列,并且每个节点的数据排列顺序和创建索引字段的顺序一致。如 1,11,23,1 是对应着联合索引 (A,B) 字段顺序的,可以对照右图看
  • 非叶子节点存储完整的索引关键字信息,排列规则和叶子节点一致。如 2,84,3 是对应着联合索引 (A,B) 字段顺序的
  • InnoDB 会使用主键索引 B+ Tree 维护索引和数据文件,同样联合索引 (A,B) 也会生成一个 B+ Tree ,只不过联合索引 B+ Treedata 部分存储的是联合索引所在行的主键值。如 01,02,102,09 等它们是联合索引所在行的主键值
  • 根据图中叶子节点的数据可以看出,所有的数据都是按照列 A 进行排序的 1,1,1,2,3,3,4,4B 列的顺序为 1,2,2,1,1,5,1,5B 列是 全局 无序的。如果使用 B = 1 这种查询条件是没有办法使用到索引的,因为联合索引首先是按 A 排序的(使用 最左 的字段来构建 B+ Tree),B 是无序的
  • 我们还可以发现在 A 值相等的情况下,B 值又是按顺序排列的,但是这种顺序是局部的。如 1,11,21,23,13,5。所以最左匹配原则遇上范围查询就会停止,剩下的字段都无法使用索引。例如 A = 1 and B = 2A,B 字段都可以使用索引,因为在 A 值确定的情况下 B 是相对有序的,而 A > 1 and B = 2A 字段可以匹配上索引,但 B 值不可以,因为 A 的值是一个范围,在这个范围中 B 是无序的

1.2. 联合索引的查询流程

  • InnoDB 会使用主键索引 B+ Tree 维护索引和数据文件,同样联合索引 (A,B) 也会生成一个 B+ Tree ,只不过联合索引 B+ Treedata 部分存储的是联合索引所在行的主键值
  • 拿到联合索引所在行的主键值后,在通过主键索引 B+ Tree 就可以直接拿到具体的行数据了

1.3. 最左前缀匹配原则

最左优先,以最左边的为起点任何 连续 的索引都能匹配上,但遇到范围查询 (>、<、between、like) 就会停止匹配。之所以会有 最左前缀匹配原则和联合索引的索引构建方式及存储结构 是有关系的

  • 联合索引是使用多列索引的第一列(最左)构建的 B+ Tree
  • 用上面 (A,B) 的例子就是使用 A 列构建的 B+ Tree ,当 A 列值相等时再以 B 列进行排序(相对有序)

1.3.1. 最左前缀匹配原则说明

  • 如查询 A = 1,那么 A 字段肯定是可以使用索引的,因为所构建的索引 B+ Tree 是依据最左即 A 列构建的,数据自然是全局有序的
  • 如查询 A = 1 and B = 2,那么 A,B 字段都可以使用索引,因为在 A 值确定的情况下 B 是相对有序的
  • 如查询 B= 2 and A = 1,对于这种情况 A,B 字段都可以使用索引的。MySQL 查询优化器会判断纠正这条 sql 语句该以什么样的顺序执行效率最高,最后才生成真正的执行计划。所以,当然是我们能尽量的利用到索引时的查询顺序效率最高咯,所以 MySQL 查询优化器会最终以这种顺序进行查询执行
  • 另外如查询 B = 2,这种情况 也是会用到索引的;可观察 explain 结果中的 type 字段是一个 indexindexALL 的区别为 index 类型只遍历索引树,这通常比 ALL 快。而上述 3 种查询情况 type 字段是一个 ref。详情:https://blog.csdn.net/qq_24690761/article/details/52787897

2. 索引下推

现在有一个需求:检索出表中名字第一个字是张,而且没有删除的信息 (is_del = 1)

select * from t_user where name like '张%' and is_del=1
  • MySQL 5.6 之前,只能从匹配的位置一个个回表。到主键索引上找出数据行,再对比字段值
  • MySQL 5.6 中引入的索引下推优化 (index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数

2.1. 无索引下推的执行流程

根据 (username, is_del) 联合索引查询所有满足名称以“张”开头的索引,然后回表查询出相应的全行数据,然后再筛选出未删除的用户数据。过程如下图

每一个虚线箭头表示回表一次
在这里插入图片描述

2.2. 有索引下推的执行流程

每一个虚线箭头表示回表一次
在这里插入图片描述
1 跟图 2 的区别是,InnoDB(username, is_del) 索引内部就判断了数据是否逻辑删除,对于逻辑删除的记录,直接判断并跳过。在我们的这个例子中,只需要对 ID1、ID4 这两条记录回表取数据判断,就只需要回表 2

  • InnoDB 引擎的表,索引下推 只能用于联合索引,因为 InnoDB 的主键索引树叶子结点上保存的是全行数据,所以这个时候索引下推并不会起到减少查询全行数据的效果
  • 索引下推一般可用于所求查询字段(select 列)不是或不全是联合索引 的字段,查询条件为多条件查询且查询条件子句(whereorder by)字段全是联合索引

参考:https://blog.csdn.net/sinat_41917109/article/details/88944290

<think>好的,我现在需要处理用户关于“索引联合索引”的查询。用户之前询问过@NotBlank注解,现在转向数据库索引,可能是在学习后端开发中的数据持久化部分。 首先,要明确用户的需求。他们可能想了解索引的基本概念,以及联合索引的具体应用场景和优化技巧。由于用户之前接触的是Java校验,可能对数据库优化不熟悉,需要从基础讲起。 接下来,我需要确定回答的结构。用户提供的示例回答结构清晰,分点说明,我应该效仿。先介绍索引,再讲联合索引,然后对比,注意事项,最后使用建议。这样用户能逐步理解。 索引部分要解释是什么、为什么使用、优缺点。联合索引则需要强调多个列的组合,以及最左前缀原则。需要举例说明,比如(name, age)的查询情况,这样用户更容易理解。 同时,用户可能对如何创建索引联合索引的SQL语法感兴趣,所以需要给出示例代码,比如CREATE INDEX语句。注意事项部分要提到过度索引的问题,写操作的性能影响,以及索引选择策略。 还要考虑用户的实际应用场景,比如在订单表中使用联合索引来优化查询,这能帮助他们将理论应用到实践中。最后,总结部分要强调合理使用索引的重要性,避免常见误区。 需要确保用词准确,避免技术术语过多,但又要保持专业性。例如,解释“最左前缀原则”时,要简明扼要,用例子说明。同时,检查是否有遗漏点,比如索引的类型(B-tree、哈希等),但用户的问题可能更关注基础,所以暂时不深入。 最后,确保回答符合之前的格式要求,使用中文,数学公式用$...$,独立公式用$$...$$,但这次内容可能不需要太多公式,但如果有涉及计算的地方要注意格式。检查是否有错误,比如索引的优缺点是否全面,联合索引的应用场景是否明确。</think>以下是对数据库索引联合索引的全面解析,采用技术文档结构呈现: 一、索引基础原理 1. **本质定义** $$ \text{索引} = \text{预排序数据结构} + \text{快速定位指针} $$ - 采用B+Tree/Hash等数据结构实现(主流数据库默认B+Tree) - 存储字段值+对应数据物理地址 2. **核心价值** - 将$O(n)$的全表扫描优化为$O(\log n)$的树搜索 - 典型空间换时间策略(索引占表空间20%-30%) 3. **创建语法示例** ```sql -- 单列索引 CREATE INDEX idx_name ON users(name); -- 联合索引(多列组合) CREATE INDEX idx_name_age ON employees(name, age DESC); ``` 二、联合索引专项解析 1. **结构特性** - 索引键值按声明顺序存储:$(\text{col1}, \text{col2}, \text{col3}) \rightarrow$ 先按col1排序,col1相同按col2排序,依此类推 - 存储结构示例: ``` (Alice,20) -> 0x1234 (Alice,25) -> 0x5678 (Bob,18) -> 0x9abc ``` 2. **最左前缀原则** - 有效查询模式: ```sql WHERE col1 = ? WHERE col1 = ? AND col2 = ? WHERE col1 = ? AND col2 > ? ``` - 失效场景: ```sql WHERE col2 = ? -- 缺少左前缀 WHERE col1 LIKE '%abc' -- 左前缀模糊匹配 WHERE col1 = ? OR col2 = ? -- OR操作破坏连续性 ``` 三、性能对比矩阵 | 对比维度 | 单列索引 | 联合索引 | |----------------|---------------------------|-------------------------| | 存储开销 | 每个索引独立存储 | 多列组合存储,节省空间 | | 查询覆盖 | 仅优化单列查询 | 支持多列组合查询 | | 排序优化 | 单字段排序 | 多字段复合排序 | | 维护成本 | 写操作需维护多个索引 | 单索引维护成本更低 | 四、实践应用建议 1. **优先场景** - 高频组合查询:`WHERE status=1 AND create_time > '2023'` - 多列排序需求:`ORDER BY last_name, first_name` - 覆盖索引优化:`SELECT id,name FROM users WHERE age=25` 2. **设计策略** - 区分度原则:高区分度列(如手机号)放左侧 - 长度控制:varchar列建立前缀索引`INDEX idx(email(10))` - 冷热分离:更新频率差异大的列避免组成联合索引 五、典型案例分析 **订单表优化场景**: ```sql CREATE TABLE orders ( id BIGINT PRIMARY KEY, user_id INT NOT NULL, status TINYINT NOT NULL, create_time DATETIME NOT NULL, amount DECIMAL(10,2) ); -- 创建联合索引 CREATE INDEX idx_user_status_time ON orders(user_id, status, create_time); ``` **生效查询**: ```sql SELECT * FROM orders WHERE user_id=123 AND status=2 ORDER BY create_time DESC LIMIT 10; EXPLAIN结果: type=ref, key=idx_user_status_time, Extra=Using where ``` 六、注意事项 1. **索引失效陷阱**: - 隐式类型转换:`WHERE varchar_col=123` - 函数操作:`WHERE YEAR(create_time)=2023` - 不等于操作:`WHERE status != 1` 2. **监控维护**: ```sql -- 查看索引使用率 SELECT * FROM sys.schema_index_statistics WHERE table_name='orders'; -- 重建索引 ALTER TABLE orders REBUILD INDEX idx_name; ``` 正确使用索引可使查询速度提升$10^2 \sim 10^4$倍,但需根据EXPLAIN执行计划和慢查询日志持续优化。建议单表索引数控制在$[3,5]$个区间,避免过度索引影响写性能。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值