【Pandas】pandas DataFrame tail

Pandas2.2 DataFrame

Reindexing selection label manipulation

方法描述
DataFrame.add_prefix(prefix[, axis])用于在 DataFrame 的行标签或列标签前添加指定前缀的方法
DataFrame.add_suffix(suffix[, axis])用于在 DataFrame 的行标签或列标签后添加指定后缀的方法
DataFrame.align(other[, join, axis, level, …])用于对齐两个 DataFrameSeries 的方法
DataFrame.at_time(time[, asof, axis])用于筛选 特定时间点 的行的方法
DataFrame.between_time(start_time, end_time)用于筛选 指定时间范围内的数据行 的方法
DataFrame.drop([labels, axis, index, …])用于从 DataFrame 中删除指定行或列的方法
DataFrame.drop_duplicates([subset, keep, …])用于删除重复行的方法
DataFrame.duplicated([subset, keep])用于检测 重复行 的方法
DataFrame.equals(other)用于比较两个 DataFrame 是否完全相等的方法
DataFrame.filter([items, like, regex, axis])用于筛选列或行标签的方法
DataFrame.first(offset)用于选取 时间序列型 DataFrame 中从起始时间开始的一段连续时间窗口 的方法
DataFrame.head([n])用于快速查看 DataFrame 前几行数据 的方法
DataFrame.idxmax([axis, skipna, numeric_only])用于查找 每列或每行中最大值的索引标签 的方法
DataFrame.idxmin([axis, skipna, numeric_only])用于查找 每列或每行中最小值的索引标签 的方法
DataFrame.last(offset)用于选取 时间序列型 DataFrame 中从最后时间点开始向前截取一段指定长度的时间窗口 的方法
DataFrame.reindex([labels, index, columns, …])用于重新索引 DataFrame 的核心方法
DataFrame.reindex_like(other[, method, …])用于将当前 DataFrame 的索引和列重新设置为与另一个对象(如另一个 DataFrame 或 Series)相同
DataFrame.rename([mapper, index, columns, …])用于重命名 DataFrame 的行索引标签或列名的方法
DataFrame.rename_axis([mapper, index, …])用于**重命名 DataFrame 的索引轴名称(index axis name)或列轴名称(column axis name)**的方法
DataFrame.reset_index([level, drop, …])用于将 DataFrame 的索引(index)重置为默认整数索引,并将原索引作为列添加回 DataFrame 中的方法
DataFrame.sample([n, frac, replace, …])用于从 DataFrame 中随机抽取样本行或列的方法
DataFrame.set_axis(labels, *[, axis, copy])用于**设置 DataFrame 的行索引(index)或列标签(columns)**的方法
DataFrame.set_index(keys, *[, drop, append, …])用于**将 DataFrame 中的一个或多个列设置为新的索引(index)**的方法
DataFrame.tail([n])用于快速查看 DataFrame 最后几行数据的方法

pandas.DataFrame.tail([n])

pandas.DataFrame.tail(n=5) 是一个用于快速查看 DataFrame 最后几行数据的方法。它默认返回最后 5 行,常用于数据探索、调试和快速检查数据集的末尾内容。


📌 方法签名
DataFrame.tail(n=5)

🔧 参数说明
参数类型说明
n整数,默认为 5要显示的最后 n 行;若为负数,则返回除前 -n 行外的所有内容

✅ 返回值
  • 返回一个新的 DataFrame,包含原始数据的最后 n 行;
  • 不会修改原始 DataFrame
  • 支持链式调用(chaining)。

🧪 示例代码及结果
示例 1:默认使用(显示最后 5 行)
import pandas as pd

# 创建一个 DataFrame
df = pd.DataFrame({
    'A': range(1, 11),
    'B': [x * 10 for x in range(1, 11)]
})

print("Original DataFrame:")
print(df)

# 显示最后 5 行
print("\ndf.tail():")
print(df.tail())
输出结果:
Original DataFrame:
    A   B
0   1  10
1   2  20
2   3  30
3   4  40
4   5  50
5   6  60
6   7  70
7   8  80
8   9  90
9  10 100

df.tail():
    A   B
5   6  60
6   7  70
7   8  80
8   9  90
9  10 100

示例 2:自定义显示最后 3 行
# 显示最后 3 行
print("\ndf.tail(3):")
print(df.tail(3))
输出结果:
df.tail(3):
    A   B
7   8  80
8   9  90
9  10 100

示例 3:使用负数参数跳过前 n 行
# 显示除前 2 行外的所有行
print("\ndf.tail(-2):")
print(df.tail(-2))
输出结果:
df.tail(-2):
    A   B
2   3  30
3   4  40
4   5  50
5   6  60
6   7  70
7   8  80
8   9  90
9  10 100

使用负数时,tail(-n) 等价于 df[n:]


🧠 应用场景
  • 数据探索:快速查看数据集的末尾部分;
  • 调试分析:验证数据处理是否影响了最后几行;
  • 日志或时间序列分析:查看最近插入的数据;
  • 结合其他方法使用:如 df.sort_values().tail() 查看最大值;
  • 链式操作中查看结果:如 df.groupby(...).sum().tail()

⚠️ 注意事项
  • 默认显示 5 行,可通过参数 n 自定义;
  • 支持负数参数,表示排除前若干行;
  • 不会修改原始 DataFrame
  • 对大型数据集非常友好,仅加载少量数据便于查看;
  • .head() 相对,.head() 查看前几行,.tail() 查看后几行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liuweidong0802

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值