Pandas2.2 DataFrame
Reindexing selection label manipulation
方法 | 描述 |
---|---|
DataFrame.add_prefix(prefix[, axis]) | 用于在 DataFrame 的行标签或列标签前添加指定前缀的方法 |
DataFrame.add_suffix(suffix[, axis]) | 用于在 DataFrame 的行标签或列标签后添加指定后缀的方法 |
DataFrame.align(other[, join, axis, level, …]) | 用于对齐两个 DataFrame 或 Series 的方法 |
DataFrame.at_time(time[, asof, axis]) | 用于筛选 特定时间点 的行的方法 |
DataFrame.between_time(start_time, end_time) | 用于筛选 指定时间范围内的数据行 的方法 |
DataFrame.drop([labels, axis, index, …]) | 用于从 DataFrame 中删除指定行或列的方法 |
DataFrame.drop_duplicates([subset, keep, …]) | 用于删除重复行的方法 |
DataFrame.duplicated([subset, keep]) | 用于检测 重复行 的方法 |
DataFrame.equals(other) | 用于比较两个 DataFrame 是否完全相等的方法 |
DataFrame.filter([items, like, regex, axis]) | 用于筛选列或行标签的方法 |
DataFrame.first(offset) | 用于选取 时间序列型 DataFrame 中从起始时间开始的一段连续时间窗口 的方法 |
DataFrame.head([n]) | 用于快速查看 DataFrame 前几行数据 的方法 |
DataFrame.idxmax([axis, skipna, numeric_only]) | 用于查找 每列或每行中最大值的索引标签 的方法 |
DataFrame.idxmin([axis, skipna, numeric_only]) | 用于查找 每列或每行中最小值的索引标签 的方法 |
DataFrame.last(offset) | 用于选取 时间序列型 DataFrame 中从最后时间点开始向前截取一段指定长度的时间窗口 的方法 |
DataFrame.reindex([labels, index, columns, …]) | 用于重新索引 DataFrame 的核心方法 |
DataFrame.reindex_like(other[, method, …]) | 用于将当前 DataFrame 的索引和列重新设置为与另一个对象(如另一个 DataFrame 或 Series)相同 |
DataFrame.rename([mapper, index, columns, …]) | 用于重命名 DataFrame 的行索引标签或列名的方法 |
DataFrame.rename_axis([mapper, index, …]) | 用于**重命名 DataFrame 的索引轴名称(index axis name)或列轴名称(column axis name)**的方法 |
DataFrame.reset_index([level, drop, …]) | 用于将 DataFrame 的索引(index)重置为默认整数索引,并将原索引作为列添加回 DataFrame 中的方法 |
DataFrame.sample([n, frac, replace, …]) | 用于从 DataFrame 中随机抽取样本行或列的方法 |
DataFrame.set_axis(labels, *[, axis, copy]) | 用于**设置 DataFrame 的行索引(index)或列标签(columns)**的方法 |
DataFrame.set_index(keys, *[, drop, append, …]) | 用于**将 DataFrame 中的一个或多个列设置为新的索引(index)**的方法 |
DataFrame.tail([n]) | 用于快速查看 DataFrame 最后几行数据的方法 |
pandas.DataFrame.tail([n])
pandas.DataFrame.tail(n=5)
是一个用于快速查看 DataFrame 最后几行数据的方法。它默认返回最后 5 行,常用于数据探索、调试和快速检查数据集的末尾内容。
📌 方法签名
DataFrame.tail(n=5)
🔧 参数说明
参数 | 类型 | 说明 |
---|---|---|
n | 整数,默认为 5 | 要显示的最后 n 行;若为负数,则返回除前 -n 行外的所有内容 |
✅ 返回值
- 返回一个新的
DataFrame
,包含原始数据的最后n
行; - 不会修改原始
DataFrame
; - 支持链式调用(chaining)。
🧪 示例代码及结果
示例 1:默认使用(显示最后 5 行)
import pandas as pd
# 创建一个 DataFrame
df = pd.DataFrame({
'A': range(1, 11),
'B': [x * 10 for x in range(1, 11)]
})
print("Original DataFrame:")
print(df)
# 显示最后 5 行
print("\ndf.tail():")
print(df.tail())
输出结果:
Original DataFrame:
A B
0 1 10
1 2 20
2 3 30
3 4 40
4 5 50
5 6 60
6 7 70
7 8 80
8 9 90
9 10 100
df.tail():
A B
5 6 60
6 7 70
7 8 80
8 9 90
9 10 100
示例 2:自定义显示最后 3 行
# 显示最后 3 行
print("\ndf.tail(3):")
print(df.tail(3))
输出结果:
df.tail(3):
A B
7 8 80
8 9 90
9 10 100
示例 3:使用负数参数跳过前 n 行
# 显示除前 2 行外的所有行
print("\ndf.tail(-2):")
print(df.tail(-2))
输出结果:
df.tail(-2):
A B
2 3 30
3 4 40
4 5 50
5 6 60
6 7 70
7 8 80
8 9 90
9 10 100
使用负数时,
tail(-n)
等价于df[n:]
。
🧠 应用场景
- 数据探索:快速查看数据集的末尾部分;
- 调试分析:验证数据处理是否影响了最后几行;
- 日志或时间序列分析:查看最近插入的数据;
- 结合其他方法使用:如
df.sort_values().tail()
查看最大值; - 链式操作中查看结果:如
df.groupby(...).sum().tail()
。
⚠️ 注意事项
- 默认显示 5 行,可通过参数
n
自定义; - 支持负数参数,表示排除前若干行;
- 不会修改原始
DataFrame
; - 对大型数据集非常友好,仅加载少量数据便于查看;
- 与
.head()
相对,.head()
查看前几行,.tail()
查看后几行。