题目背景
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
题目描述
现在请你编一个程序验证哥德巴赫猜想。
先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。
输入输出格式
输入格式:
仅有一行,包含一个正奇数n,其中9<n<20000
输出格式:
仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。
输入输出样例
先打素数表。见get_prime函数。is_prime=1不是素数,反之是素数。
然后遍历第一个数,当第一个数是素数时就开始遍历第二个数,相应判断第二个数是不是素数,为了节省时间,同时把第三个数也判断一下。只要找到一组解就输出。
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#define maxn 20000
using namespace std;
int res;
int prime[maxn];
bool is_prime[maxn];
void get_prime(int n)
{
memset(is_prime, 0, sizeof(is_prime));
is_prime[0] = is_prime[1] = 1;
for (int i = 2; i <= n; i++)
{
if (!is_prime[i])
{
prime[res++] = i;
for (int j = 2; j*i <= n; j++) is_prime[j*i] = 1;
}
}
}
int main()
{
int n;
cin >> n;
get_prime(n);
for (int i = 2; i <= n; i++)
{
int tmp = n;
if (!is_prime[i])
{
tmp -= i;
for (int j = 2; j <= tmp; j++)
{
if (!is_prime[j] && !is_prime[tmp - j])
{
cout << i << ' ' << j << ' ' << tmp - j;
return 0;
}
}
}
}
}
#include<iostream>
#include<cmath>
using namespace std;
void isprime(int);
bool prime[20001];
int n;
int main()
{
cin>>n;
isprime(n); //求出n之内的所有素数
for(int i=2;i<=n-4;i++) //最小的素数是2,最大不超过n-4
for(int j=2;j<=n-4;j++)
{
int k=n-i-j; //第三个用其他两个表示,可以少一层循环
if(k>=2&&prime[i]&&prime[j]&&prime[k]) {cout<<i<<" "<<j<<" "<<k<<endl;return 0;}
}
return 0;
}
void isprime(int n)
{
for(int i=2;i<=n;i++) prime[i]=true;
prime[1]=false;
for(int i=2;i<=sqrt(n);i++)
if(prime[i]==true)
for(int j=2;j<=n/i;j++)
prime[i*j]=false;
}