洛谷P1579 哥德巴赫猜想(升级版)

题目背景

1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。

这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。

从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

题目描述

现在请你编一个程序验证哥德巴赫猜想。

先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。

输入输出格式

输入格式:

仅有一行,包含一个正奇数n,其中9<n<20000

输出格式:

仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。

输入输出样例

输入样例#1:  复制
2009
输出样例#1:  复制
3 3 2003








先打素数表。见get_prime函数。is_prime=1不是素数,反之是素数。
然后遍历第一个数,当第一个数是素数时就开始遍历第二个数,相应判断第二个数是不是素数,为了节省时间,同时把第三个数也判断一下。只要找到一组解就输出。
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#define maxn 20000
using namespace std;

int res;
int prime[maxn];
bool is_prime[maxn];

void get_prime(int n)
{
	memset(is_prime, 0, sizeof(is_prime));
	is_prime[0] = is_prime[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!is_prime[i])
		{
			prime[res++] = i;
			for (int j = 2; j*i <= n; j++) is_prime[j*i] = 1;
		}
	}
}

int main()
{
	int n;
	cin >> n;
	get_prime(n);
	for (int i = 2; i <= n; i++)
	{
		int tmp = n;
		if (!is_prime[i])
		{
			tmp -= i;
			for (int j = 2; j <= tmp; j++)
			{
				if (!is_prime[j] && !is_prime[tmp - j])
				{

					cout << i << ' ' << j << ' ' << tmp - j;
					return 0;
				}
			}
		}
	}
}


另附别人的代码,他们为什么从2遍历到n-4?这个有点不懂

#include<iostream>
#include<cmath>
using namespace std;
void isprime(int);
bool prime[20001];
int n;
int main()
{
    cin>>n;
    isprime(n);   //求出n之内的所有素数 
    for(int i=2;i<=n-4;i++)   //最小的素数是2,最大不超过n-4 
      for(int j=2;j<=n-4;j++)
        {
            int k=n-i-j;   //第三个用其他两个表示,可以少一层循环 
             if(k>=2&&prime[i]&&prime[j]&&prime[k]) {cout<<i<<" "<<j<<" "<<k<<endl;return 0;}
         }
        return 0;    
}
void isprime(int n)
{
    for(int i=2;i<=n;i++) prime[i]=true;
    prime[1]=false;
    for(int i=2;i<=sqrt(n);i++)
      if(prime[i]==true)
         for(int j=2;j<=n/i;j++)
            prime[i*j]=false;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水之积也不厚,则其负大舟也无力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值