小游戏

成绩10开启时间2018年02月21日 星期三 12:15
折扣0.8折扣时间2018年12月28日 星期五 23:15
允许迟交关闭时间2018年12月29日 星期六 23:15

问题描述

小李很喜欢玩计算机游戏,特别是战略游戏,但是有时他不能尽快找到解所以常常感到很沮丧。现在面临如下问题:他必须在一个中世纪的城堡里设防,城堡里的道路形成一棵无向树。要在结点上安排最少的士兵使得他们可以看到所有边。你能帮助他吗?

你的任务是给出士兵的最少数目。

输入格式

输入包含多组数据。每组数据表示一棵树,在每组数据中:

第一行是结点的数目。

接下来的几行,每行按如下格式描述一个结点:

结点标识符 : ( 道路的数目 ) 结点标识符1  结点标识符2  ……  结点标识符道路的数目

或者

结点标识符 : (0)

对于 n (0<n<=1500) 个结点,结点标识符是一个从 0 到 n - 1 的整数。每条边在测试用例中只出现一次。

输出格式

对于每组数据,各给出一个整数表示士兵的最少数目.

 测试输入关于“测试输入”的帮助期待的输出关于“期待的输出”的帮助时间限制关于“时间限制”的帮助内存限制关于“内存限制”的帮助额外进程关于“{$a} 个额外进程”的帮助
测试用例 1以文本方式显示
  1. 4↵
  2. 0:(1) 1↵
  3. 1:(2) 2 3↵
  4. 2:(0)↵
  5. 3:(0)↵
  6. 5↵
  7. 3:(3) 1 4 2↵
  8. 1:(1) 0↵
  9. 2:(0)↵
  10. 0:(0)↵
  11. 4:(0)↵
以文本方式显示
  1. 1↵
  2. 2↵
1秒64M0





解法一:用邻接表存储图
/*
优先删除全部孤立点,随后考虑度为1的结点(即树中的叶子结点),
因为叶子结点必须要被覆盖,将其与父亲结点比较可知,将士兵放置在父亲结点可得到更优解。
删除父亲结点和叶结点,继续寻找新的叶子结点,直到所有结点都被覆盖。
*/

#include <stdio.h>
#include <string.h>

int  pr[1503][1503];//邻接表,每行第0个元素代表这个节点输入完后连接了多少个节点,即从第1个元素开始就是这个节点连接的其他节点

int main(){
	//freopen("1.txt", "r", stdin);
	int r[1501], n, i, j, k, point, num, p, count, m, flag;
	while (scanf("%d", &n) != -1){

		flag = 0;

		if (n == 1){      //如果只有一个点,答案为1
			printf("1\n");
			continue;
		}
		else{

			memset(pr, -1, sizeof(pr));
			memset(r, 0, sizeof(r));
			for (int i = 0; i < n; i++)
				pr[i][0] = 0;
			//输入
			for (i = 0; i<n; i++)
			{
				scanf("%d:(%d)", &point, &num);
				if (num != 0){//如果输入的num有非0的,即图中有边,flag=1
					flag = 1;
				}
				for (j = 0; j<num; j++)
				{
					scanf("%d", &p);
					pr[point][0]++;//point点连接的节点个数加1
					pr[point][pr[point][0]] = p;//point点后面依次添加p点
					pr[p][0]++;//p点连接的节点个数加1
					pr[p][pr[p][0]] = point;//p点后面依次添加point点
					r[p]++;//p点度数加1
					r[point]++;//point点度数加1
				}
			}

			if (flag == 0){//如果图中没边
				printf("0\n");
				continue;
			}
			else{
				count = 0;
				m = n;//m变量用来覆盖所有点
				while (m>0)
				{
					for (j = 0; j<n; j++)
					{
						if (r[j] == 1)//寻找度数为1的点,进行操作
						{
							r[j]--;//该点度数减1
							m--;//图中少了一个点
							k = pr[j][1]; //度数为1的节点只连接着1个节点,所以该行取下标为1的元素就是该度数为1的点的一个父节点k
							pr[j][1] = -1;//少了一个点的话该度数为1的点就没有点了,将它仅连着的k点设置为-1,代表无点连接j了
							count++;//在这个父节点上设置一个士兵
							r[k] = 0;//接下来要删除k的所有子节点,将k的度数设置为0
							m--; //图中又少了个点
							for (i = 1; i <= pr[k][0]; i++)//在k连接的点中找到j,并将这个j的位置设置为-1,k和j就彻底断绝了关系,哈哈哈哈哈。!!!(打感叹号的代码是不是可以重构呢?)
							{
								if (pr[k][i] == j)
								{
									pr[k][i] = -1;
									break;
								}
							}
							//开始删除k的子节点
							for (i = 1; i <= pr[k][0]; i++)
							{
								if (pr[k][i] == -1)continue;//如果当前位置的子节点已经删除过就不进行后面的操作
								int mark = pr[k][i];//获得当前这个点的编号
								
								if (r[mark] == 1)//如果这个子节点是1度的
								{
									r[mark] = 0;
									m--;//图中少了一个点
									pr[k][i] = -1;//这干什么应该知道了吧
									pr[mark][1] = -1;
								}
								else//如果这个子节点不是1度的
								{
									r[mark]--;
									pr[k][i] = -1;
									for (int i = 1; i <= pr[mark][0]; i++)//在mark连接的节点中找到k,将k的位置设为-1,mark和k又断绝了关系!!!(打感叹号的代码是不是可以重构呢?)
									{
										if (pr[mark][i] == k)
										{
											pr[mark][i] = -1;
											break;
										}
									}
								}
							}
						}
					}
				}

				printf("%d\n", count);
			}
		}

	}
	return 0;
}




解法二:用邻接矩阵存储图

网上看了一个估计是学长写的吧,但是我不明白了,为什么邻接矩阵会比邻接表快?

解法一是我把他这个改成了邻接表的。

这下载的,花了我5金币

https://download.csdn.net/download/jingmiaoxianren/2988552#comment

/*
优先删除全部孤立点,随后考虑度为1的结点(即树中的叶子结点),
因为叶子结点必须要被覆盖,将其与父亲结点比较可知,将士兵放置在父亲结点可得到更优解。
删除父亲结点和叶结点,继续寻找新的叶子结点,直到所有结点都被覆盖。
*/
#include <stdio.h>
#include <string.h>

char pr[1501][1501];

int main(){
	//freopen("1.txt", "r", stdin);
	int r[1501], n, i, j, k, t, point, num, p, count, m, flag;
	while (scanf("%d", &n) != -1){

		flag = 0;

		if (n == 1){      //如果只有一个点,答案为1
			printf("1\n");
			continue;
		}
		else{

			memset(pr, 0, sizeof(pr));
			memset(r, 0, sizeof(r));

			//输入
			for (i = 0; i<n; i++)
			{
				scanf("%d:(%d)", &point, &num);
				if (num != 0){//如果输入的num有非0的,即图中有边,flag=1
					flag = 1;
				}
				r[point] += num;
				for (j = 0; j<num; j++)
				{
					scanf("%d", &p);
					pr[point][p] = pr[p][point] = 1;
					r[p]++;
				}
			}

			if (flag == 0){//如果图中没边
				printf("0\n");
				continue;
			}
			else{
			count = 0;
				m = n;//m变量用来覆盖所有点
				while (m>0)
				{
					for (j = 0; j<n; j++)
					{
						if (r[j] == 1)//寻找度数为1的点,进行操作
						{
							r[j]--;
							m--;
							for (k = 0; k<n; k++)
							{
								if (pr[j][k] != 0)//找到该度数为为1的节点的一个父节点k
								{
									pr[j][k] = pr[k][j] = 0;
									r[k] = 0;
									count++;
									m--;
									break;
								}
							}
							for (t = 0; t<n; t++)//找k的所有子节点
							{
								if (pr[k][t] == 1)
								{
									if (r[t] == 1)//如果这个子节点是1度的
									{
										pr[k][t] = pr[t][k] = 0;
										m--;
										r[t] = 0;
									}
									else{//如果这个子节点不是1度的
										pr[k][t] = pr[t][k] = 0;
										r[t]--;
									}
								}
							}
						}
					}
				}

				printf("%d\n", count);
			}
		}

	}
	return 0;
}


阅读更多

扫码向博主提问

水之积也不厚,则其负大舟也无力

非学,无以致疑;非问,无以广识
去开通我的Chat快问

没有更多推荐了,返回首页