洛谷 P1736 创意吃鱼法

题目描述

回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*)。她发现,把大池子视为01矩阵(0表示对应位置无鱼,1表示对应位置有鱼)有助于决定吃鱼策略。

在代表池子的01矩阵中,有很多的正方形子矩阵,如果某个正方形子矩阵的某条对角线上都有鱼,且此正方形子矩阵的其他地方无鱼,猫猫就可以从这个正方形子矩阵“对角线的一端”下口,只一吸,就能把对角线上的那一队鲜鱼吸入口中。

猫猫是个贪婪的家伙,所以她想一口吃掉尽量多的鱼。请你帮猫猫计算一下,她一口下去,最多可以吃掉多少条鱼?

输入输出格式

输入格式:

有多组输入数据,每组数据:

第一行有两个整数n和m(n,m≥1),描述池塘规模。接下来的n行,每行有m个数字(非“0”即“1”)。每两个数字之间用空格隔开。

对于30%的数据,有n,m≤100

对于60%的数据,有n,m≤1000

对于100%的数据,有n,m≤2500

输出格式:

只有一个整数——猫猫一口下去可以吃掉的鱼的数量,占一行,行末有回车。

输入输出样例

输入样例#1: 复制
4 6
0 1 0 1 0 0
0 0 1 0 1 0
1 1 0 0 0 1
0 1 1 0 1 0
输出样例#1: 复制
3

说明

右上角的

1 0 0 0 1 0 0 0 1



思路:

dp【i】【j】表示达到以(i,j)为右下顶点的正方形能吃多少鱼

要记录从(i,j)往左、右、上连续0的个数,还得开三个数组

代码上右注释

#include<iostream>
#include<algorithm>
#include<stdio.h>
#define Maxn 2502
using namespace std;

int map[Maxn][Maxn];
int up[Maxn][Maxn];
int lefts[Maxn][Maxn];
int rights[Maxn][Maxn];
int n, m;
int dp[Maxn][Maxn];
int ans;

int main()
{
	//freopen("1.txt","r",stdin);
	//注意用scanf,cin貌似会超时
	scanf("%d%d", &n, &m);

	for (int i = 1; i <= n; i++)
	for (int j = 1; j <= m; j++)
	{
		//cin >> map[i][j];
		scanf("%d",&map[i][j]);
	}

	//找到每个点,从该点往左数连续0的个数,往上数连续0的个数
	for (int i = 1; i <= n; i++)
	for (int j = 1; j <= m; j++)
	{
		if (!map[i][j - 1])
			lefts[i][j] = lefts[i][j - 1] + 1;
		if (!map[i - 1][j])
			up[i][j] = up[i - 1][j] + 1;
	}

	//找到每个点,从该点往右数连续0的个数
	for (int i = 1; i <= n;i++)
	for (int j = m; j >= 1;j--)//逆序来
	if (!map[i][j + 1])
		rights[i][j] = rights[i][j + 1] + 1;

	for (int i = 1; i <= n;i++)
	for (int j = 1; j <= m; j++)
	{
		if (map[i][j])
		{	//dp【i】【j】从左上(dp【i-1】【j-1】)和右上(dp【i-1】【j+1】)转移过来
			//以从左上转移的为例子,l=dp【i-1】【j-1】,lefts【i】【j】,up【i】【j】三者中最小的,这样才能保证其余位置是0
			int l = min(min(dp[i-1][j-1],lefts[i][j]),up[i][j])+1;//从左上到右下
			int r = min(min(dp[i - 1][j + 1], rights[i][j]),up[i][j])+1;//从右上到左下
			dp[i][j] = max(l, r);//dp【i】【j】等于这两个方向转移过来的较大值
			ans = max(ans, dp[i][j]);//更新一下答案
		}
	}
	cout << ans<<endl;
	return 0;
}

阅读更多

扫码向博主提问

好雨天堂

非学,无以致疑;非问,无以广识
去开通我的Chat快问
个人分类: 动态规划
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭