
机器学习算法python实现
文章平均质量分 79
学习基本的机器学习算法,包括KNN、logistic回归、SVM、决策树、Bayes等,并用python实现
007lizhen
这个作者很懒,什么都没留下…
展开
-
机器学习算法---决策树
1、决策树的分类在建立一棵决策树的过程中,一个很重要的问题就是:怎么样将树干分叉? 由此问题,便引申出了三种基本的决策树:ID3:利用数据集的信息增益来划分,在介绍信息增益之前先来了解一下熵的概念。 对于一个数据集,其熵定义如下: H=−∑i=1np(xi)log2p(xi)H=-\sum_{i=1}^n p(x_i)log_2p(x_i) 其中p(xi)p(x_原创 2017-12-18 16:25:41 · 1770 阅读 · 0 评论 -
机器学习算法python实现---朴素贝叶斯算法(朴素Bayes)
1、算法基本原理我是这样理解的,通过已知的训练数据及其对应的类别,利用贝叶斯理论(即条件概率公式),得到这种问题的一个概率模型。模型的输入是特征数据,输出是数据对应的类别。那么,将待分类数据的特征数据代入此模型,就可得到其属于所有类别的概率,概率大者作为该数据的类别。 另外,该算法中的“朴素”二字说明此方法存在一个很强的假设:用于分类的特征,即特征向量的每一维度间,在类别确定的条件下是相互独立的。原创 2017-12-03 18:27:52 · 1385 阅读 · 0 评论 -
python .txt文件读取及数据处理总结
1、处理包含数据的文件最近利用Python读取txt文件时遇到了一个小问题,就是在计算两个np.narray()类型的数组时,出现了以下错误: TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('<U3') dtype('<U3') dtype('<U3')作为一个Python原创 2017-11-30 18:27:32 · 92174 阅读 · 1 评论 -
机器学习算法的python实现(1)---k近邻算法(kNN)
1、算法工作原理对给定的训练数据集和输入数据集(待分类或回归的数据集),首先确定在训练数据集中距离输入实例的k个最近邻的实例点,然后利用这k个实例点的类别的多数来预测输入实例的类别。 由此可知,k近邻算法的三个要素为:距离度量: 一般为欧式距离 也可为其他距离,如:LpL_p距离或MinkowskiMinkowski距离。k值的选择:k值的选择对k近邻算法的结果产生重大的影响。若选择较原创 2017-11-29 22:52:58 · 853 阅读 · 0 评论