Reinforcement and Online Learning
文章平均质量分 86
Bernard_Yang
致力将晦涩难懂的东西讲明白
展开
-
马尔可夫蒙特卡洛(MCMC)-从平稳分布,细致平衡到Metropolis-Hastings和Gibbs采样
Metropolis-Hastings原创 2021-05-01 05:46:33 · 2783 阅读 · 8 评论 -
粒子滤波-从重要性采样(IS)到序列重要性采样(SIS)再到序列重要性重采样(SIR)
应用场所粒子滤波:针对非线性、非高斯分布的模型,用采到的样本表示概率分布(target PDF),求解p(zt∣x1:t)p(z_t | x_{1:t})p(zt∣x1:t)(根据1到t时刻的观测变量x求解t时刻隐变量z)重要性采样(IS)目标:计算服从于target PDF分布的函数f(z)f(z)f(z)的期望,通过应用Monte Carlo方法在概率分布中抽取N个样本,则E[f(z)]≈1N∑i=1Nf(zi)E[f(z)] \approx\frac{1}{N}\sum_{i=1}^{原创 2021-03-21 07:19:15 · 3464 阅读 · 5 评论