Basic Monte Carlo Sampling
应用场所
粒子滤波:针对非线性、非高斯分布的模型,用采到的样本表示概率分布(target PDF),求解 p ( z t ∣ x 1 : t ) p(z_t | x_{1:t}) p(zt∣x1:t)(根据1到t时刻的观测变量x求解t时刻隐变量z)
重要性采样(IS)
-
目标:计算服从于target PDF分布的函数 f ( z ) f(z) f(z)的期望,通过应用Monte Carlo方法在概率分布中抽取N个样本,则
p ( y ) = E [ f ( z ) ] ≈ 1 N ∑ i = 1 N f ( z i ) p(\mathbf{y})=E[f(z)] \approx\frac{1}{N}\sum_{i=1}^{N}f(z_i) p(y)=E[f(z)]≈N1i=1∑Nf(zi)
但如果概率分布比较复杂,则可以通过q(z)(proposal distribution)作为桥梁(importance sampling):
E [ f ( z ) ] = ∫ z f ( z ) p ( z ) d z = ∫ z f ( x ) p ( z ) q ( z ) q ( z ) d z = ∑ i = 1 N f ( z i ) p ( z i ) q ( z i ) E[f(z)] = \int_zf(z)p(z)dz = \int_zf(x)\frac{p(z)}{q(z)}q(z)dz = \sum_{i=1}^Nf(z_i)\frac{p(z_i)}{q(z_i)} E[f(z)]=∫zf(z)p(z)dz=∫zf(x)q(z)p(z)q(z)dz=i=1∑Nf(zi)q(zi)p(zi)
直接采样,然后对每个样本应用权重得到期望的近似估计,最后进行权重归一化。 -
在滤波问题求解 p ( z t ∣ x 1 : t ) p(z_t | x_{1:t}) p(zt∣x1:t)时,权重表达式:
w t i = p ( z t i ∣ x 1 : t ) q ( z t i ∣ x 1 : t ) w_t^i = \frac{p(z_{t}^i | x_{1:t})}{q(z_{t}^i| x_{1:t})} wti=q(zti∣x1:t)p(zti∣x