计算机程序的解释和构造(1)

构造过程抽象

	/**
     * 计算机程序的解释和构造(1)
     *   @构造过程抽象
     *      @解决大规模的问题需要经过一系列的规划,其中大部分工作东西只有在工作进程中才能出现。
     *      @有机体必须进行演化然后才能生存,要不然就是死亡——————进化智力复杂性技术。面的更大的世界
     *
     *      @程序设计的基本要素
     *          过程和数据
     *              数据就是我们需要操作的东西,而过程就是操作数据的基本规则设计
     *          @基本表达式
     *              用于表示语言所关心的最简单的个体
     *          @组合的方法
     *              通过它们可以从比较简单的方式出发构造出复合的元素
     *          @抽象方法
     *              通过它们可以为复合对象命名,并将它们当做基本单元去操作
     *
     *      @过程和可以产生的计算
     *          能够看清楚所考虑的动作的后果的能力,至关重要的能力
     *
     */

构造数据抽象

/**
     *  @构造数据抽象
     *      抽象是克服复杂性的一种基础技术——比如应对noise
     *
     *      @数据抽象屏障是控制复杂度的有力工具。
     *          通过对数据对象的“基础表示”隐藏,就可以设计一个大的任务,分割为一组分别可以处理的小任务。
     *          基础表示并不总是有意义!!!
 /

在这里插入图片描述
在这里插入图片描述
来源《计算机程序的解释和构造》

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
1,过程作为返回值 在1.3中我们明白了高阶函数之后,“用一个过程作为另外一个过程的返回值”则是稀松平常的事情了,比如下面的代码: (define (f x) (+ x 1)) (define (g) f) ((g) 2) 函数g没有参数,其返回值为函数f,所以((g) 2)就运算结果就是(f 2),最后运算结果为3。 上面是用一个已命名的函数作为返回结果的,相应的,也可以将一个“匿名过程”作为结果返回,这里的“匿名过程”也就是我们的Lambda表达式,所以上面的代码可以改造成: (define (g) (lambda (x) (+ x 1))) ((g) 2) 那么((g) 2)的运算结果就是((lambda (x) (+ x 1)) 2),最后运算结果为3。 2,牛顿法 学到这里,你可能需要复习一下高等数学的基本内容,包括“导数”和“微分”,高数的在线教材可以在这里找到:http://sxyd.sdut.edu.cn/gaoshu1/index.htm 关于牛顿法的介绍可以看这里:http://en.wikipedia.org/wiki/Newton%27s_method ,下面是程序: (define (close-enough? v1 v2) (< (abs (- v1 v2)) 0.000000001)) ;定义不动点函数 (define (fixed-point f first-guess) (define (try guess step-count) (let ((next (f guess))) (if (close-enough? guess next) next (try next (+ step-count 1))))) (try first-guess 0)) ;定义导数函数 (define (D f) (lambda (x dx) (/ (- (f (+ x dx)) (f x)) dx))) ;牛顿法 (define (newton g first-guess) (fixed-point (lambda (x) (- x (/ (g x) ((D g) x 0.000000001)))) first-guess)) ;平方 (define (square x) (* x x)) ;定义开方,来测试下牛顿法 (define (sq x) (newton (lambda (y) (- (square y) x)) 1.0)) (sq 5) 3,“一等公民” 这里列出了程序语言中作为“一等公民”的语言元素所具备的几个“特权”: 可以用变量命名 可以作为过程参数 可以作为过程返回结果 可以被包含在数据结构中 4,练习1.40 求三次方程 x^3 + ax^2 + bx + c 的零点。 首先,证明 函数f(x) = x^3 + ax^2 + bx + c 是“可微”的: 由可导和可微的性质知道,可导和可微互为充要条件,所以,要证可微我们可以先证可导, f ’ (x) = (x^3)’ + (ax^2)’ + (bx)’ + (c)’ = 3x^2 + 2ax + b 所以f(x)的导数存在,那么f(x)可导,其必定可微。 其次,利用“牛顿法”:如果f(x)是可微函数,那么f(x)=0的一个解就是函数(x – f(x)/df(x)的一个不动点,其中df(x)是f(x)的导数。所以我们可以轻松得到下面的代码: (define (close-enough? v1 v2) (< (abs (- v1 v2)) 0.000000001)) ;定义不动点函数 (define (fixed-point f first-guess) (define (try guess step-count) (let ((next (f guess))) (if (close-enough? guess next) next (try next (+ step-count 1))))) (try first-guess 0)) ;定义导数函数 (define (D f) (lambda (x dx) (/ (- (f (+ x dx)) (f x)) dx))) ;牛顿法 (define (newton g first-guess) (fixed-point (lambda (x) (- x (/ (g x) ((D g) x 0.000000001)))) first-guess)) ;定义cubic函数,也就是我们题目中所谓的f(x) (define (cubic a b c) (lambda (x) (+ (* x x x) (* a x x) (* b x) c))) ;随便定义几个系数 (define a 3) (define b 5) (define c 8) (define result (newton (cubic a b c) 1.0)) ;定义一个验证过程,让其验证得到的解,是否让方程成立 (define (validate x) (= 0 (+ (* x x x) (* a x x) (* b x) c))) ;输出结果 result ;验证结果 (validate result) 比如上面我们计算 x^3 + 3x^2 + 5x + 8 = 0, 其一个解为:-2.3282688556686084 .....

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

P("Struggler") ?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值