Data-Engineering with Databricks

98 篇文章 0 订阅
66 篇文章 0 订阅

See

Data-Engineering


Simply put

Ingesting Diverse Data

The first step in enabling reproducible analytics and ML is to ingest diverse data from various sources, including structured and unstructured data, real-time streams, and batch processing. This requires an understanding of data ingestion tools and technologies such as Apache Kafka, Apache Nifi, or custom API integrations. By ingesting diverse data, organizations can ensure that they have a comprehensive view of their business operations, customer interactions, and market trends.

Processing at Scale

Once the data is ingested, the next challenge is processing it at scale. This involves leveraging distributed computing frameworks such as Apache Hadoop, Apache Spark, or cloud-based services like Amazon Web Services (AWS) or Microsoft Azure. Processing data at scale enables organizations to derive valuable insights, detect patterns, and build ML models that can drive decision-making and business outcomes.

Reproducible Analytics and ML

Reproducibility is a critical aspect of data analytics and ML. It ensures that the results obtained from a particular dataset and model are consistent and can be replicated. Achieving reproducibility requires a systematic approach to data processing, feature engineering, model training, and evaluation. Tools such as Jupyter Notebooks, Docker, and version control systems like Git are essential for managing reproducible workflows and sharing results with stakeholders.

Delivering on All Use Cases

Finally, the ultimate goal of ingesting diverse data, processing it at scale, and ensuring reproducible analytics and ML is to deliver on all use cases. Whether it’s optimizing supply chain operations, personalizing customer experiences, or predicting market trends, organizations must be able to derive actionable insights and deploy ML models in production. This requires collaboration between data scientists, engineers, and business stakeholders to ensure that the analytics and ML solutions meet the specific requirements of each use case.


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

P("Struggler") ?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值