1. Choosing the Right Model:
Selecting the appropriate model forms the foundation of your machine learning journey. Here's how to approach this step like an expert:
- Understanding the Problem: Begin by clearly defining the problem you aim to solve. Is it a classification, regression, or clustering task? This will guide your model selection process.
- Data Exploration: Dive into your data. Analyze its characteristics, identify potential issues, and gain insights into any existing relationships between features.
- Considering Algorithm Strengths and Weaknesses: Research various machine learning algorithms and their strengths. For instance, if your data is high-dimensional, consider using dimensionality reduction techniques before applying algorithms like Support Vector Machines (SVMs) that might be sensitive to such data.
2. Splitting Data Wisely: