「1. 观察」
在过去的几年里,“生化环材转码农”是网上冲浪时的高频话题,似乎“编程”成了改变人生的捷径。
而如今,讨论的焦点却转向了“考公考编”和“副业自由”。
从开发需求到自研App、小程序、网站,许多程序员试图寻找一条更稳妥的出路,来应对行业动荡带来的不安。
那么问题来了:面对快速变化的2025年,程序员的好规划是什么?
我的答案是:从系统工程的方向出发,加宽护城河。
「2. 重新识“码”:宽进严出」
在技术开源和知识分享的推动下,计算机行业吸引了无数人才。
尤其是通用人工智能(如ChatGPT)的出现,将进一步打开行业的大门。
这就是“宽进”。
从bootstrap到vue、到小程序、区块链,再到现在的大模型,技术新潮一浪接一浪。
看似风口不断,但每一波浪潮都让人害怕“掉队”。
然而现实是,单靠技术加法,并不足以支撑整个职业生命周期。
随着技术门槛的降低和行业竞争的加剧,并不是所有人都能依靠计算机技术安全度过每个职业阶段。
这是“严出”。
因此,要想在这条跑道上走得更远,不只是要会写代码,更要站在技术之上,构建属于自己的护城河。
「3. 计算机护城河理论:系统工程是核心」
“护城河”原本是巴菲特在价值投资中的核心思想,指企业通过构筑壁垒,抵御市场竞争,赚取稳定的超额利润。
而对于程序员而言,这个概念同样适用。
计算机行业无疑是一个朝阳行业。
而随着出生率的下降、计算机的逐步蔓延,行业的总体容量仍会缓慢上涨,但个人职业的护城河却需要重新定义。
而我们应该认识到,计算机行业的护城河是系统工程的,而非技术的。
为什么是系统工程?
系统工程,从现有的技术、资源出发,构建更庞大、更具市场价值的系统。
换句话说,学会“做大楼”,而不是只“搬砖”。
能“建系统”的人永远比会“写模块”的人更难被取代。
「4. 新技术调研:为护城河添梁柱」
要构建属于自己的系统工程能力,就必须对新技术保持敏感,做到包容与吸纳。
以下从两方面调研金融科技和大模型技术相关行业:头部公司招聘情况、学术研究情况。
4.1. 科技金融
4.1.1 职业岗位
(1) 量化研究岗
学历专业要求(如国内外知名,机器学习、数学、统计等专业),以发掘新因子、构建新模型为工作内容。
(2) 机器学习岗
学历专业要求(如国内外知名,机器学习、数学、统计等专业),以机器学习方式研发、构建模型方案。
(3) 后端系统岗(如策略系统、服务平台)
学历专业要求(重点本科级以上的计算机、数学等专业),以C/C++、Pyhton构建后台为工作内容。
(4) 网络工程岗
学历专业要求(重点本科级以上的计算机、数学等专业),以建设、维护网络为工作内容。
4.1.2 相关学术研究
基于金融资产因子(如异象因子、Fama-French因子、基本面估值错配因子)、市场因子(如平均价格、压力指标等)结合AI模型预测股票收益。
4.2 通用大模型
4.2.1 职业岗位
(1) 算法岗
学历专业要求(硕士以上,计算机科学等专业),以设计、优化及验证模型结构为工作内容。
(2) 客户端开发岗
以Web、IOS、安卓客户端开发为工作内容。
(3) 数据处理岗
以数据预处理为工作内容(如标注、清洗)。
4.2.2 相关学术研究
通用大模型未来发展有 5 个关键方向:模型优化、多模态学习、数据与知识双驱动、具情感大模型以及伦理与社会影响。
4.3 私有化大模型
4.3.1 职业岗位
(1) 后端系统岗(大模型私有化部署平台)
学历专业要求(本科以上,计算机等专业),研发、优化大模型私有化部署平台。
(2) 自动化测试岗
以平台的软硬件测试为工作内容。
(3) 算法岗
学历专业要求(本科以上),以大模型推理加速引擎开发为工作内容(如GPU/CPU平台的优化策略制定、微架构设计)。
4.3.2 相关学术研究
图片来源:参考资料[7]
图片来源:参考资料[7]
「5. 结尾」
2025年,不确定性可能仍然是生活的主旋律,但危机的另一面往往就是机会。
程序员不是写代码的机器,而是解决问题的工程师。面对风口浪潮,与其追逐趋势,不如在系统工程中深耕细作。
从构建护城河开始,为未来铺平道路。
参考资料
[1]胡青渝,陈其安.基于先验前馈神经网络的股票市场收益预测[J/OL].系统工程理论与实践,1-23[2025-01-15].http://kns.cnki.net/kcms/detail/11.2267.N.20241218.0908.002.html.
[2]张鹏,朱岁虹,崔淑琳.基于BP神经网络的三因子均值-方差投资组合优化[J/OL].数学的实践与认识,1-15[2025-01-15].https://sso.gzlib.org.cn/interlibSSO/goto/75/+jmr9bmjh9mds/kcms/detail/11.2018.o1.20250106.1749.032.html.
[3]乔政,卓榕生,葛瑶,等.基于机器学习的企业基本面估值错配异象研究[J/OL].系统工程理论与实践,1-30[2025-01-15].https://sso.gzlib.org.cn/interlibSSO/goto/75/+jmr9bmjh9mds/kcms/detail/11.2267.N.20241218.0909.004.html.
[4]赵鑫博,陆忠华.面向深度行情因子挖掘的分布式训练关键技术研究[J].计算机工程与科学,2024,46(09):1554-1565.
[5]吴宏旭,房勇,邓智斌.A股市场的隐性因子模型——基于特征排序框架的深度学习[J/OL].系统科学与数学,1-25[2025-01-15].https://sso.gzlib.org.cn/interlibSSO/goto/75/+jmr9bmjh9mds/kcms/detail/11.2019.O1.20240802.0942.008.html.
[6]任福继,张彦如.通用大模型演进路线[J].科技导报,2024,42(12):44-50.
[7]任海玉,刘建平,王健,等.基于大语言模型的智能问答系统研究综述[J/OL].计算机工程与应用,1-24[2025-01-15].https://sso.gzlib.org.cn/interlibSSO/goto/75/+jmr9bmjh9mds/kcms/detail/11.2127.TP.20241227.1952.011.html.