(1)核心库与统计:Numpy、Scipy、Pandas、StatsModels。
(2)可视化:Matplotlib、Seaborn、Plotly、Bokeh、Pydot、Scikit-learn、XGBoost/LightGBM/CatBoost、Eli5。
(3)深度学习:Tensorflow、PyTorch、Keras。
(4)分布式深度学习:Dist-keras/elephas/spark-deep-learning。
(5)自然语言处理:NLTK、SpaCy、Gensim。
(6)数据抓取:Scrapy。
————————————————
版权声明:本文为CSDN博主「AI专家」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_42039090/article/details/82944675
keras中文官方文档https://keras.io/zh/
https://keras-cn.readthedocs.io/en/latest/layers/about_layer/