(一)机器学习
机器学习的第一个定义:第一个机器学习的定义来自于Arthur Samuel。他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域。
机器学习的第二个定义:来自卡内基梅隆大学的Tom教授定义的机器学习:一个好的学习问题定义如下,一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。(T为任务,P为性能度量,E为经验)
两种主要的机器学习问题监督学习和无监督学习
(1)监督学习
监督学习指的就是我们给学习算法一个数据集,这个数据集由“正确答案”组成。即对于给定的输入有确定的输出 。
1.1回归问题
回归问题:指的是我们试着对这个问题推测出一个连续值的结果。
回归:指的是我们试着对这个问题推测出一系列连续值属性。即我们根据之前的数据预测出一个准确的输出值。
1.2分类问题
分类问题:指的是我们试着对这个问题推测出离散的输出值,当然对于分类问题来说输出可以是多个。比如说可能有三种乳腺癌,所以你希望预测离散输出0、1、2、3。0 代表良性,1 表示第1类乳腺癌,2表示第2类癌症,3表示第3类,但这也是分类问题。
(2)无监督学习
无监督学习中没有任何的标签或者是有相同的标签或者就是没标签。所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么。别的都不知道,就是一个数据集。
对于无监督学习,一般才用聚类算法来把数据分成不同的簇。