图相关算法

拓扑排序

vector<int> G[MAXN];
int inDegree[MAXN]={0}; //入度

bool topSort(){
	int num=0;
    //用priority_queue可以保证先输出较小的节点
	priority_queue<int,vector<int>,greater<int> >q;
    //将入度为0的节点入队
	for(int i=0;i<n;i++){
		if(inDegree[i]==0){
			q.push(i);
		}
	} 	
	while(!q.empty()){
		int u=q.top();
		printf("%d ",u);
		q.pop();
		for(int i=0;i<G[u].size();i++){
			int v=G[u][i];
			inDegree[v]--;//相邻的顶点的入度减1
			if(inDegree[v]==0){//将入度为0的节点入队
				q.push(v);
			}
		}
		G[u].clear();//清除以u为尾的弧
		num++;
	}
	if(num==n)return true;
	else return false;//拓扑序列顶点数小于n,拓扑排序失败
}

关键路径:

int inDegree[MAXN]={0};//入度
stack<int> topOrder;//存放拓扑序列
int ve[MAXN]={0};//节点最早开始时间
int vl[MAXN];//节点最晚结束时间
vector<Node> G[MAXN];//图的邻接表
vector<pair<int,int> > ans;//保存结果路径 

//先拓扑排序
bool topSort(){	
	queue<int> q;
	//将所有入度为0的入队列 
	for(int i=1;i<=n;i++){
		if(inDegree[i]==0){
			q.push(i);
		}
	}
	while(!q.empty()){
		int u=q.front();
		q.pop();
		topOrder.push(u);//加入拓扑序列中 
		for(int i=0;i<G[u].size();i++){
			int v=G[u][i].v;
			inDegree[v]--;//所有相邻节点的入度减1 
			if(inDegree[v]==0){
				q.push(v);//入度为0,入队列 
			} 
			//计算ve[]数组 
			if(ve[u]+G[u][i].w>ve[v]){
				ve[v]=ve[u]+G[u][i].w;
			}			
		}
	}
	if(topOrder.size()==n)return true;
	else return false;
}

int CriticalPath(){
	if(topSort()==false) return -1;
	//找到最长距离(即汇点对应的最早开始时间ve)
	int MAX=-1; 
	for(int i=1;i<=n;i++){
		if(ve[i]>MAX){
			MAX=ve[i];
		}
	} 	
	//初始化vl数组 	
	fill(vl,vl+MAXN,MAX);
	while(!topOrder.empty()){
		int u=topOrder.top();
		topOrder.pop();
		//更新vl[]数组 
		for(int i=0;i<G[u].size();i++){
			int v=G[u][i].v;
			if(vl[v]-G[u][i].w<vl[u]){
				vl[u]=vl[v]-G[u][i].w;
			}
		}
	} 
	//遍历所有活动
	for(int u=1;u<=n;u++){
		for(int i=0;i<G[u].size();i++){
			int v=G[u][i].v,w=G[u][i].w;
			int e=ve[u],l=vl[v]-w;
			if(e==l){//e=l的活动是关键活动
				ans.push_back(make_pair(u,v));
			}
		}
	} 
	return MAX;//返回关键路径长度 
}

Dijkstra 单源最短路径+DFS搜索结果路径:

int n;//顶点数
int optvalue;//第二标尺最优值
int G[MAXV][MAXV];
int d[MAXV];//起点到达各点的最短路径长度
bool vis[MAXV]={false};//标记数组,true表示已访问
vector<int> pre[MAXV];//最短路径前一个顶点 
vector<int>path,tempPath; //最优路径,临时路径 

void Dijkstra(int s){//s为起点 
	fill(d,d+MAXV,INF);//初始到所有点的距离为INF 
	d[s]=0;
	for(int i=0;i<n;i++){//循环n次
		//找到未访问的顶点中d[]最小的 
		int u=-1,MIN=INF;
		for(int j=0;j<n;j++){
			if(vis[j]==false&&d[j]<MIN){
				u=j;
				MIN=d[j];
			}
		} 
		//找不到 
		if(u==-1)return ; 
		//找到之后标记为已访问 
		vis[u]=true;
		//更新d[] 
		for(int v=0;v<n;v++){
			if(vis[v]==false&&G[u][v]!=INF){
				if(d[u]+G[u][v]<d[v]){
					d[v]=d[u]+G[u][v];
					pre[v].clear();
					pre[v].push_back(u);
				} else if(d[u]+G[u][v]==d[v]){
					pre[v].push_back(u);
				}			
			}
		} 
	} 
} 
int st=0; 
void DFS(int v){//v为当前访问节点 
	if(v==st){//st为路径起点
		tempPath.push_back(v);
		int value;
		/* 计算value*/
		//如果value优于optvalue,更新 
		if(value>optvalue){
			optvalue=value;
			path=tempPath;
		}
		tempPath.pop_back();
		return;
	} 
	
	tempPath.push_back(v);
	for(int i=0;i<pre[v].size();i++){
		DFS(pre[v][i]);
	}
	tempPath.pop_back();
} 

Floyd最短路径:
 

int dis[MAXN][MAXN];//表示顶点i和顶点j的最短距离 
//Floyd初始化
fill(dis[0],dis[0]+MAXV*MAXV,INF);
for(int i=0;i<n;i++){
	dis[i][i]=0;
} 

void Floyd(){
	for(int k=0;k<n;i++){
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){
				if(dis[i][k]!=INF&&dis[k][j]!=INF&&dis[i][k]+dis[k][j]<dis[i][j]){
					dis[i][j]=dis[i][k]+dis[k][j];
				}
			}
		}
	}
} 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值