Faster RCNN源码解读(Tensorflow 版)

(二)anchors的产生

我们fork下来的项目里,lib文件下有如下文件:
在这里插入图片描述
config:配置文件,一些超参数和项目路径的配置
nets:网络的类定义文件,基类:network,派生类:vgg16或resnet
datasets:处理数据集的代码包,主要用到factory.py,imdb.py,pascal_voc.py,roidb.py;
layer_utils:一些网络训练或测试时需要用到的辅助函数,比如proposal_layer.py:产生约2000个boxes,以及其得分,这里我们要解析的是generate_anchors.py和snippets.py文件实现的功能,现在我们直接跳转到vgg16的build_rpn函数处,我们发现,在创建RPN 之前,首先运行了self._anchor_componet()函数,该函数定义于network.py中,我们找到他:
在这里插入图片描述
height即为图像放缩后的高/16,width即为图像放缩后的宽/16的向上取整,后面我们将二者简记为H,W,其实这也是feature map的尺寸;接着执行tf.py_func函数,该函数的功能是:将输入为ndarray的参数输出为一个tensor(为何如此操作?因为,训练时我们‘喂入’单张图片,而每张图片的尺寸可能不一样,这样H,W的值就会变化,通过设置tensor的某个维度为None,以接收可变的维度); 该函数输入五个参数:H,W,self._feat_stride,self._anchor_scales,self._anchor_ratios
该函数定义在layer_utils文件夹下的snippets.py中,详见第二段代码
首先我们关注一下generate_anchors这个函数,其返回9个中心点在(7.5,7.5),w = (128,256,512,184, 368, 736,88,187,352),h = (128,256,512,96,192,384,176,352,704)
可见w:h的比例有3种:即1,2,0.5; scales也有三种(8,16,32),例如16*(8,16,32)=(128,256,512),23*(8,16,32)=(184,368,736)…

def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
                     scales=2 ** np.arange(3, 6)):
    # scales: [8 16 32]
    """
    Generate anchor (reference) windows by enumerating aspect ratios X
    scales wrt a reference (0, 0, 15, 15) window.
    """
    base_anchor = np.array([1, 1, base_size, base_size]) - 1 # base_anchor = [0 0 15 15]
    ratio_anchors = _ratio_enum(base_anchor, ratios)
    #print(ratio_anchors)
    '''
    [[-3.5  2.  18.5 13. ]
     [ 0.   0.  15.  15. ]
     [ 2.5 -3.  12.5 18. ]]
    '''
    #print([_scale_enum(ratio_anchors[i, :], scales) for i in range(ratio_anchors.shape[0])]) # scales = [8, 16, 32]
    # scales = [8, 16, 32]
    anchors = np.vstack([_scale_enum(ratio_anchors[i, :], scales) for i in range(ratio_anchors.shape[0])]) # 合并行
    ## scales = [8, 16, 32] ratio_anchors.shape[0] = 3

    return anchors
    # anchors:
    ''' ->1.w = 23, h = 12, x_ctr = 7.5, y_ctr = 7.5时:
        ws = [184, 368, 736]; hs = [96,192,384]
        np.stack(7.5-0.5*([184,368,736]-1),7.5-0.5*([96,192,384]-1),7.5+0.5*([184,368,736]-1),7.5+0.5*([96,192,384])-1)
        =np.stack(7.5-[91.5,183.5,367.5], 7.5-[47.5, 95.5, 191.5],7.5+[91.5,183.5,367.5],  7.5+[47.5, 95.5, 191.5])
        =np.stack([-84,-176,-360],[99,191,375],[-40,-88,-184],[55,103,199])
        =[[ -84.  -40.   99.   55.] # [x1,y1,x2,y2]
          [-176.  -88.  191.  103.]
          [-360. -184.  375.  199.]]
        ->2.w=16, h=16, x_ctr = 7.5, y_ctr = 7.5时:
        ws = [128,256,512], hs = [128,256,512]
        np.stack(7.5-0.5*([128,256,512]-1), 7.5-0.5*([128,256,512]-1),7.5+0.5([128,256,512]-1),, 7.5+0.5*([128,256,512]-1))
        =np.stack(7.5-[63.5,127.5,255.5], 7.5-[63.5,127.5,255.5], 7.5+[63.5,127.5,255.5], 7.5+[63.5,127.5,255.5])
        =np.stack([-56,-120,-248],[-56,-120,-248],[71,135,263],[71,135,263])
        =[[-56,-120,-248]
          [-56,-120,-248]
          [ 71, 135, 263]
          [ 71, 135, 263]]
        ->3.w=11,h=22,x_ctr=7.5,y_ctr=7.5
        ws = [88,187,352], hs = [176,352,704]
        np.stack(7.5-0.5*([88,187,352]-1),7.5-0.5*([176,352,704]-1), 7.5+0.5*([88,187,352]-1),  7.5+0.5*([176,352,704]-1))
        =np.stack(7.5-[43.5,93.5,175.5],7.5-[87.5,175.5,351.5],7.5+[43.5,93.5,175.5], 7.5+[87.5,175.5,351.5])\
        =[[ -36.  -80.   51.   95.]
          [ -80. -168.   95.  183.]
          [-168. -344.  183.  359.]]
    # [x1,y1,x2,y2]      
   [[ -84.  -40.   99.   55.] 
    [-176.  -88.  191.  103.]
    [-360. -184.  375.  199.] w:h = 2:1
    [ -56.  -56.   71.   71.]
    [-120. -120.  135.  135.]
    [-248. -248.  263.  263.] w:h = 1:1
    [ -36.  -80.   51.   95.]
    [ -80. -168.   95.  183.]
    [-168. -344.  183.  359.]]w:h = 1:2
    '''

# 返回对于一个anchor窗口的width, height, 和中心坐标(x, y)
def _whctrs(anchor): # anchor = [0 0 15 15]
    """
    Return width, height, x center, and y center for an anchor (window).
    """

    w = anchor[2] - anchor[0] + 1 # w = 16
    h = anchor[3] - anchor[1] + 1 # h = 16
    x_ctr = anchor[0] + 0.5 * (w - 1) # x_ctr = 7.5
    y_ctr = anchor[1] + 0.5 * (h - 1) # y_ctr = 7.5
    return w, h, x_ctr, y_ctr

# 给定一组宽高向量,输出各个anchor,即预测窗口(包括左上角、右下角坐标),各个anchors的面积相等,只是宽高比不同
def _mkanchors(ws, hs, x_ctr, y_ctr):
    """
    Given a vector of widths (ws) and heights (hs) around a center
    (x_ctr, y_ctr), output a set of anchors (windows).
    """

    ws = ws[:, np.newaxis] # ws = array([[23], [16], [11]])
    hs = hs[:, np.newaxis] # hs = array([[12], [16], [22]])

    anchors = np.hstack((x_ctr - 0.5 * (ws - 1),
                         y_ctr - 0.5 * (hs - 1),
                         x_ctr + 0.5 * (ws - 1),
                         y_ctr + 0.5 * (hs - 1))) # 按水平方向进行合并(合并列)
    #print(anchors) 如下:面积大小为16*16,中心点都是(7.5,7.5),但长宽比为(0.5,1,2)
    '''
    [[-3.5  2.  18.5 13. ]
     [ 0.   0.  15.  15. ]
     [ 2.5 -3.  12.5 18. ]]
    '''
    return anchors 

# 枚举一个anchor三种宽高比的具体数值
def _ratio_enum(anchor, ratios):
    """ 列举关于一个anchors的三种宽高比 1:2, 1:1, 2:1
    Enumerate a set of anchors for each aspect ratio wrt an anchor.
    """
    w, h, x_ctr, y_ctr = _whctrs(anchor) # w, h, x_ctr, y_ctr = 16, 16, 7.5, 7.5
    size = w * h # size = 256
    # 解释: sqrt(S/a)*a*sqrt(S/a) = S
    size_ratios = size / ratios # size_ratios = [512, 256, 128]
    ws = np.round(np.sqrt(size_ratios)) # ws = [round(16*1.414=22.6)=23, 16, 11]
    hs = np.round(ws * ratios) # ws * ratios = [11.5, 16, 22]; hs = [12, 16, 22]
    # print(np.round(11.5)) 得到12
    #print(np.round(4.5)) 得到4
    #print(ws)
    #print(hs)
    anchors = _mkanchors(ws, hs, x_ctr, y_ctr) # 给定一组宽高向量,输出各个窗口的中心坐标、左上角、右下角坐标
    return anchors


# 枚举一个anchor的各种尺度(width&height的放大倍数)scales = [8, 16, 32],以anchor[0 0 15 15]为例
# anchor = [-3.5  2.  18.5 13. ], [ 0.   0.  15.  15. ], [ 2.5 -3.  12.5 18. ]
def _scale_enum(anchor, scales):
    """ 列举一个关于anchor的三种尺度 128*128 256*256 512*512
    Enumerate a set of anchors for each scale wrt an anchor.
    """
    # 以anchor = [-3.5  2.  18.5 13. ]为例
    w, h, x_ctr, y_ctr = _whctrs(anchor)  # w = 23, h = 12, x_ctr = 7.5, y_ctr = 7.5(当然anchor的中心点坐标不会变化)
    ws = w * scales # ws = [184, 368, 736]
    hs = h * scales # hs = [96, 192, 384]
    anchors = _mkanchors(ws, hs, x_ctr, y_ctr) # 给定一组宽高向量,输出各个窗口的中心坐标、左上角、右下角坐标
    return anchors

理解了中心点在(7.5,7.5),base_size = 16处(其实就是feature map上最左上角的那个点在原图的感受野)9个anchors的产生过程,其实后面那些anchors只需要在此9个anchors上做w,h方向的偏移即可,因为每次偏移一个像素点,故在横轴方向偏移时,x的坐标+16,y的坐标不变,而在纵轴方向偏移时,y的坐标+16,x的坐标不变,因为有HxW个像素点,故偏移向量有WxH个,最后总的anchors的维度为:(HxWx9,4)

import numpy as np
from lib.layer_utils.generate_anchors import generate_anchors

# height = ceil(height/16.0): 向正无穷方向取整,width = ceil(width/16.0)
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2)):
    # 产生位置:调用函数 generate_anchors得到 shape为(9,4)的ndarray.(9个anchors,每个anchors有四个参数x1,y1,x2,y2)
    anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
    #print(anchors)
    # anchors:
    ''' base = [0,0,15,15],scales = [8,16,32],ratios = [0.5,1,2]的
        [ x1, y1, x2, y2 ]:
            [[ -84.  -40.   99.   55.]
             [-176.  -88.  191.  103.]
             [-360. -184.  375.  199.]
             [ -56.  -56.   71.   71.]
             [-120. -120.  135.  135.]
             [-248. -248.  263.  263.]
             [ -36.  -80.   51.   95.]
             [ -80. -168.   95.  183.]
             [-168. -344.  183.  359.]]
    '''
    A = anchors.shape[0] # 9
    # 以 height:32(ceil(500/16)), width:23(ceil(353/16)) 为例; 得到feature maps上每个点的anchors之间的h和w的偏移量(以16等差)
    shift_x = np.arange(0, width) * feat_stride # np.arange(0,width) * [16,], width = 23
    # shift_x: [  0  16  32  48  64  80  96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352]
    shift_y = np.arange(0, height) * feat_stride # np.arange(0, height) * [16,], height = 32
    '''shift_y = [  0  16  32  48  64  80  96 112 128 144 160 176 192 208 224 240 256 272
                    288 304 320 336 352 368 384 400 416 432 448 464 480 496]
    '''
    '''
    a, b = np.meshgrid(x,y): x变成矩阵 a 的行向量,y变成矩阵 b 的列向量 ,a,b的维度相同
    '''
    shift_x, shift_y = np.meshgrid(shift_x, shift_y)
    # shift_x: 32个shift_x(每个shift_x为行向量); shift_y: 23列shift_y(每个shift_y为列向量)
    #print(shift_y)
    '''
    print(shift_x) (32,23)
    [[  0  16  32  48  64  80  96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352]
     [  0  16  32  48  64  80  96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352]
     [  0  16  32  48  64  80  96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352]
     ...
     [  0  16  32  48  64  80  96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352]
    ]
    print('--------------------------')
    print(shift_y):
    [[0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ] #23个
     [16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16]
     ...
     [496 496 496 496 496 496 496 496 496 496 496 496 496 496 496 496 496 496 496 496 496 496 496]
     ]
    print('--------------------------')
    print(shift_x.shape) # (32, 23)
    print(shift_y.shape) # (32, 23)
    '''
    #print(shift_y.ravel()) # 功能和flatten相同,即将多维数组降至一维,区别在于 flatten不改变原始矩阵,但ravel会改变原始矩阵。
    #print(np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel()))[1,:])
    shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # 不转置之前的 shape 为(4, 736)
    #print(shifts.shape) # (736, 4)
    K = shifts.shape[0] # K = 736
    #print(shifts[0:48])
    #output:
    '''
    [[  0   0   0   0]
     [ 16   0  16   0]
     [ 32   0  32   0]
     [ 48   0  48   0]
     [ 64   0  64   0]
     [ 80   0  80   0]
     [ 96   0  96   0]
     [112   0 112   0]
     [128   0 128   0]
     [144   0 144   0]
     [160   0 160   0]
     [176   0 176   0]
     [192   0 192   0]
     [208   0 208   0]
     [224   0 224   0]
     [240   0 240   0]
     [256   0 256   0]
     [272   0 272   0]
     [288   0 288   0]
     [304   0 304   0]
     [320   0 320   0]
     [336   0 336   0]
     [352   0 352   0] # feature map第一行的点的锚框的偏移(23个偏移量)
     [  0   16   0   16]
     [ 16   16  16   16]
     [ 32   16  32   16]
     [ 48   16  64   16]
     [ 80   16  80   16]
     [ 96   16  96   16]
     [112   16 112   16]
     [128   16 128   16]
     [144   16 144   16]
     [160   16 160   16]
     [176   16 176   16]
     [192   16 192   16]
     [208   16 208   16]
     [224   16 224   16]
     [240   16 240   16]
     [256   16 256   16]
     [272   16 272   16]
     [288   16 288   16]
     [304   16 304   16]
     [320   16 320   16]
     [336   16 336   16]
     [352   16 352   16]] # feature map第二行的点的锚框的偏移(23个偏移量,相比于第一行,只有y1,y2发生16像素点的偏移)
    '''
    # width changes faster, so here it is H, W, C
    #print(anchors.reshape((1, 9, 4)))
    #print(shifts.reshape((1, K, 4)).transpose((1,0,2)).shape) # (736, 1, 4)
    # transpose((1, 0, 2))多维数组的转置:原来数组的第一、二维索引调换一下;
    # 给每一个点的anchors加上该位置对应的x,y方向的偏移量(H*W个点对应H*W个偏移量数组)
    anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
    #print(shifts.reshape((1, K, 4)).transpose((1, 0, 2)).shape) # (736, 1, 4)
    #print(anchors.shape) # (736, 9, 4)
    #print(anchors[23,:,:])
    anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False) # anchors.shape = (6624, 4)
    # 一共得到 H*W*9个anchors,每个anchors有四个参数值
    length = np.int32(anchors.shape[0]) # 736*9 = 6624
    return anchors, length # 返回的是一个 (height * width * 9, 4)的ndarray, length = height * width * 9.
    # 每张图片产生的anchors及其数量
# if __name__ == '__main__':
#     a,b =generate_anchors_pre(32, 23, [16,], anchor_scales=(8, 16, 32), anchor_ratios=(0.5, 1, 2))
#     print(a[0:8])

至此,在HxW大小的feature map上,产生了HxWx9个anchors…接下来做什么呢?下一篇讲解~

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
# 工程内容 这个程序是基于tensorflow的tflearn库实现部分RCNN功能。 # 开发环境 windows10 + python3.5 + tensorflow1.2 + tflearn + cv2 + scikit-learn # 数据集 采用17flowers据集, 官网下载:http://www.robots.ox.ac.uk/~vgg/data/flowers/17/ # 程序说明 1、setup.py---初始化路径 2、config.py---配置 3、tools.py---进度条和显示带框图像工具 4、train_alexnet.py---大数据集预训练Alexnet网络,140个epoch左右,bitch_size为64 5、preprocessing_RCNN.py---图像的处理(选择性搜索、数据存取等) 6、selectivesearch.py---选择性搜索源码 7、fine_tune_RCNN.py---小数据集微调Alexnet 8、RCNN_output.py---训练SVM并测试RCNN(测试的时候测试图片选择第7、16类中没有参与训练的,单朵的花效果好,因为训练用的都是单朵的) # 文件说明 1、train_list.txt---预训练数据,数据在17flowers文件夹中 2、fine_tune_list.txt---微调数据2flowers文件夹中 3、1.png---直接用选择性搜索的区域划分 4、2.png---通过RCNN后的区域划分 # 程序问题 1、由于数据集小的原因,在微调时候并没有像论文一样按一个bitch32个正样本,128个负样本输入,感觉正样本过少; 2、还没有懂最后是怎么给区域打分的,所有非极大值抑制集合canny算子没有进行,待续; 3、对选择的区域是直接进行缩放的; 4、由于数据集合论文采用不一样,但是微调和训练SVM时采用的IOU阈值一样,有待调参。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值