吴恩达编程作业——搭建多层神经网络

搭建多层神经网络

首先声明本文参考https://blog.csdn.net/u013733326/article/details/79767169,通过学习自己动手实现了前文中的所有功能,并归纳了一个思维导图,更加清晰地了解各个模块的功能及使用,对理解 多层的神经网络有很大的帮助。

import numpy as np
import h5py
import matplotlib.pyplot as plt
import testCases 
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward 
import lr_utils 

在这里插入图片描述

对于多层神经网络的初始化

def initialize_parameters_deep(layers_dims):
    """
    此函数是为了初始化多层网络参数而使用的函数。
    参数:
        layers_dims - 包含我们网络中每个图层的节点数量的列表
    
    返回:
        parameters - 包含参数“W1”,“b1”,...,“WL”,“bL”的字典:
                     W1 - 权重矩阵,维度为(layers_dims [1],layers_dims [1-1])
                     bl - 偏向量,维度为(layers_dims [1],1)
    """
    np.random.seed(3)
    parameters = {}
    L = len(layers_dims)
    
    for l in range(1,L):
        parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1])/ np.sqrt(layers_dims[l - 1])
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))
        
        #确保我要的数据的格式是正确的
        assert(parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l-1]))
        assert(parameters["b" + str(l)].shape == (layers_dims[l], 1))
        
    return parameters

#测试initialize_parameters_deep
print("==============测试initialize_parameters_deep==============")
layers_dims = [5,4,3]
parameters = initialize_parameters_deep(layers_dims)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

==============测试initialize_parameters_deep==============
W1 = [[ 0.79989897  0.19521314  0.04315498 -0.83337927 -0.12405178]
 [-0.15865304 -0.03700312 -0.28040323 -0.01959608 -0.21341839]
 [-0.58757818  0.39561516  0.39413741  0.76454432  0.02237573]
 [-0.18097724 -0.24389238 -0.69160568  0.43932807 -0.49241241]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[-0.59252326 -0.10282495  0.74307418  0.11835813]
 [-0.51189257 -0.3564966   0.31262248 -0.08025668]
 [-0.38441818 -0.11501536  0.37252813  0.98805539]]
b2 = [[0.]
 [0.]
 [0.]]

前向传播函数

线性部分【Linear】

def linear_forward(A,W,b):
    """
    实现前向传播的线性部分。

    参数:
        A - 来自上一层(或输入数据)的激活,维度为(上一层的节点数量,示例的数量)
        W - 权重矩阵,numpy数组,维度为(当前图层的节点数量,前一图层的节点数量)
        b - 偏向量,numpy向量,维度为(当前图层节点数量,1)

    返回:
         Z - 激活功能的输入,也称为预激活参数
         cache - 一个包含“A”,“W”和“b”的字典,存储这些变量以有效地计算后向传递
    """
    Z = np.dot(W,A) + b
    assert(Z.shape == (W.shape[0],A.shape[1]))
    cache = (A,W,b)
     
    return Z,cache

#测试linear_forward
print("==============测试linear_forward==============")
A,W,b = testCases.linear_forward_test_case()
Z,linear_cache = linear_forward(A,W,b)
print("Z = " + str(Z))

==============测试linear_forward==============
Z = [[ 3.26295337 -1.23429987]]

sigmoid函数

def sigmoid(Z):
    """
    在numpy中实现sigmoid激活

    参数:
        Z——任意形状的numpy数组

    返回:
        A——sigmoid(z)的输出,形状与z相同
        cache——也返回Z,在反向传播时很有用
    """

    A = 1/(1+np.exp(-Z))
    activation_cache = Z

    return A, activation_cache

relu函数

def relu(Z):
    """
    实现RELU函数。
    参数:
        Z——任意形状线性层的输出
    返回:
        A——激活后参数,形状与Z相同
        cache——包含“a”的python字典;存储计算向后通过有效
    """

    A = np.maximum(0,Z)

    assert(A.shape == Z.shape)

    activation_cache = Z 
    return A, activation_cache

线性激活部分【Linear–>Activation】

def linear_activation_forward(A_prev,W,b,activation):
    """
    实现LINEAR-> ACTIVATION 这一层的前向传播

    参数:
        A_prev - 来自上一层(或输入层)的激活,维度为(上一层的节点数量,示例数)
        W - 权重矩阵,numpy数组,维度为(当前层的节点数量,前一层的大小)
        b - 偏向量,numpy阵列,维度为(当前层的节点数量,1)
        activation - 选择在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】

    返回:
        A - 激活函数的输出,也称为激活后的值
        cache - 一个包含“linear_cache”和“activation_cache”的字典,我们需要存储它以有效地计算后向传递
    """
    
    if activation == "sigmoid":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
    elif activation == "relu":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = relu(Z)
    
    assert(A.shape == (W.shape[0],A_prev.shape[1]))
    cache = (linear_cache,activation_cache)
    
    return A,cache

#测试linear_activation_forward
print("==============测试linear_activation_forward==============")
A_prev, W,b = testCases.linear_activation_forward_test_case()

A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
print("sigmoid,A = " + str(A))

A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
print("ReLU,A = " + str(A))


==============测试linear_activation_forward==============
sigmoid,A = [[0.96890023 0.11013289]]
ReLU,A = [[3.43896131 0.        ]]

构建一个带有l-1层Relu激活函数的linear_activation_forward,最后接一个sigmoid的linear_activation_forward
在这里插入图片描述

def L_model_forward(X, parameters):
    """
    实现[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID计算前向传播,也就是多层网络的前向传播,为后面每一层都执行LINEAR和ACTIVATION
    
    参数:
        X - 数据,numpy数组,维度为(输入节点数量,示例数)
        parameters - initialize_parameters_deep()的输出
    
    返回:
        AL - 最后的激活值
        caches - 包含以下内容的缓存列表:
                 linear_relu_forward()的每个cache(有L-1个,索引为从0到L-2)
                 linear_sigmoid_forward()的cache(只有一个,索引为L-1)
    """
    caches = []
    A = X
    L = len(parameters) // 2
    for l in range(1,L):
        A_prev = A
        A, cache = linear_activation_forward(A_prev, parameters['W'+str(l)], 
                                             parameters['b' + str(l)], "relu")
        caches.append(cache)
        
    AL, cache = linear_activation_forward(A, parameters['W'+str(L)], 
                                             parameters['b' + str(L)], "sigmoid")
    caches.append(cache)

    assert(AL.shape == (1,X.shape[1]))
    
    return AL, caches

#测试L_model_forward
print("==============测试L_model_forward==============")
X,parameters = testCases.L_model_forward_test_case()
AL,caches = L_model_forward(X,parameters)
print("AL = " + str(AL))
print("caches 的长度为 = " + str(len(caches)))

==============测试L_model_forward==============
AL = [[0.17007265 0.2524272 ]]
caches 的长度为 = 2

计算成本

在这里插入图片描述

def compute_cost(AL, Y):
    """
    实施等式定义的成本函数。

    参数:
        AL - 与标签预测相对应的概率向量,维度为(1,示例数量)
        Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)

    返回:
        cost - 交叉熵成本
    """
    m = Y.shape[1]
    cost = - np.sum(np.multiply(np.log(AL), Y) + np.multiply(np.log(1- AL), 1- Y) )
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    
    return cost
#测试compute_cost
print("==============测试compute_cost==============")
Y,AL = testCases.compute_cost_test_case()
print("cost = " + str(compute_cost(AL, Y)))

==============测试compute_cost==============
cost = 1.244794798846191

反向传播

流程图如下
在这里插入图片描述

公式如下:
在这里插入图片描述

在这里插入图片描述

线性部分

def linear_backward(dZ,linear_cache):
    """
    为单层实现反向传播的线性部分(第L层)

    参数:
         dZ - 相对于(当前第l层的)线性输出的成本梯度
         cache - 来自当前层前向传播的值的元组(A_prev,W,b)

    返回:
         dA_prev - 相对于激活(前一层l-1)的成本梯度,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度,与W的维度相同
         db - 相对于b(当前层l)的成本梯度,与b维度相同
    """
    A_prev, W, b = linear_cache
    m = A_prev.shape[1]
    dW = np.dot(dZ, A_prev.T) / m
    db = np.sum(dZ, axis=1, keepdims=True) / m
    dA_prev = np.dot(W.T, dZ)
    
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    
    return dA_prev, dW, db

#测试linear_backward
print("==============测试linear_backward==============")
dZ, linear_cache = testCases.linear_backward_test_case()

dA_prev, dW, db = linear_backward(dZ, linear_cache)
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))

==============测试linear_backward==============
dA_prev = [[ 0.51822968 -0.19517421]
 [-0.40506361  0.15255393]
 [ 2.37496825 -0.89445391]]
dW = [[-0.10076895  1.40685096  1.64992505]]
db = [[0.50629448]]

sigmoid反向传播

def sigmoid_backward(dA, activation_cache):
    """
   实现一个单s型单元的反向传播。

    参数:
        dA——激活后梯度,任意形状
        cache - - 'Z'我们存储计算向后传播效率

    返回:
        dZ——成本相对于Z的梯度
    """

    Z = activation_cache

    s = 1/(1+np.exp(-Z))
    dZ = dA * s * (1-s)

    assert (dZ.shape == Z.shape)

    return dZ

relu反向传播

def relu_backward(dA, activation_cache):
    """
    实现一个RELU单元的反向传播。
    参数:
        dA——激活后梯度,任意形状
        cache- 'Z'我们存储计算向后传播效率
    返回:
        dZ——成本相对于Z的梯度
    """

    Z = activation_cache
    dZ = np.array(dA, copy=True) # just converting dz to a correct object.

    # When z <= 0, you should set dz to 0 as well. 
    dZ[Z <= 0] = 0

    assert (dZ.shape == Z.shape)

    return dZ
def linear_activation_backward(dA, cache, activation="relu"):
    linear_cache, activation_cache = cache
    if activation =='relu':
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == 'sigmoid':
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    return dA_prev, dW, db
#测试linear_activation_backward
print("==============测试linear_activation_backward==============")
AL, linear_activation_cache = testCases.linear_activation_backward_test_case()
 
dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid")
print ("sigmoid:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")
 
dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu")
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))

==============测试linear_activation_backward==============
sigmoid:
dA_prev = [[ 0.11017994  0.01105339]
 [ 0.09466817  0.00949723]
 [-0.05743092 -0.00576154]]
dW = [[ 0.10266786  0.09778551 -0.01968084]]
db = [[-0.05729622]]

relu:
dA_prev = [[ 0.44090989 -0.        ]
 [ 0.37883606 -0.        ]
 [-0.2298228   0.        ]]
dW = [[ 0.44513824  0.37371418 -0.10478989]]
db = [[-0.20837892]]
# 计算损失函数到输出层的梯度
# dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))

在这里插入图片描述

def L_model_backward(AL, Y, caches):
    """
    对[LINEAR-> RELU] *(L-1) - > LINEAR - > SIGMOID组执行反向传播,就是多层网络的向后传播
    
    参数:
     AL - 概率向量,正向传播的输出(L_model_forward())
     Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)
     caches - 包含以下内容的cache列表:
                 linear_activation_forward("relu")的cache,不包含输出层
                 linear_activation_forward("sigmoid")的cache
    
    返回:
     grads - 具有梯度值的字典
              grads [“dA”+ str(l)] = ...
              grads [“dW”+ str(l)] = ...
              grads [“db”+ str(l)] = ...
    """

    grads = {} # 保存用于权重更新的梯度值
    L = len(caches)  # 获取 神经网络 的层数 
    m = AL.shape[1]  # 获取样本数
    Y = Y.reshape(AL.shape) 
    dAL = -(np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # 计算损失函数到输出层的dA
    
    current_cache = caches[L - 1] # 取回最后一层的 linear_caches, activation_caches
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")
    
    # 获取中间relu线性激活层的各梯度
    for l in reversed(range(L - 1)):
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
        
    return grads
#测试L_model_backward
print("==============测试L_model_backward==============")
AL, Y_assess, caches = testCases.L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dA1 = "+ str(grads["dA1"]))

==============测试L_model_backward==============
dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167]
 [0.         0.         0.         0.        ]
 [0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1 = [[-0.22007063]
 [ 0.        ]
 [-0.02835349]]
dA1 = [[ 0.          0.52257901]
 [ 0.         -0.3269206 ]
 [ 0.         -0.32070404]
 [ 0.         -0.74079187]]

更新参数

def update_parameters(parameters, grads, learning_rate):
    """
    使用梯度下降更新参数
    
    参数:
     parameters - 包含你的参数的字典
     grads - 包含梯度值的字典,是L_model_backward的输出
    
    返回:
     parameters - 包含更新参数的字典
                   参数[“W”+ str(l)] = ...
                   参数[“b”+ str(l)] = ...
    """
    L = len(parameters) // 2
    for l in range(L):
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
    
    return parameters
#测试update_parameters
print("==============测试update_parameters==============")
parameters, grads = testCases.update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)
 
print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))


==============测试update_parameters==============
W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008]
 [-1.76569676 -0.80627147  0.51115557 -1.18258802]
 [-1.0535704  -0.86128581  0.68284052  2.20374577]]
b1 = [[-0.04659241]
 [-1.28888275]
 [ 0.53405496]]
W2 = [[-0.55569196  0.0354055   1.32964895]]
b2 = [[-0.84610769]]

搭建多层神经网络

def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False,isPlot=True):
    """
    功能:实现一个L层神经网络
    参数:X - 输入的数据,维度为(n_x,例子数)
           Y - 标签,向量,0为非猫,1为猫,维度为(1,数量)
           layers_dims - 层数的向量,维度为(n_x,n_h,···,n_h,n_y)
           learning_rate - 学习率
           num_iterations - 迭代的次数
           print_cost - 是否打印成本值,每100次打印一次
          isPlot - 是否绘制出误差值的图谱
    输出:parameters--模型学习的参数。 然后他们可以用来预测
    """
    
    np.random.seed(1)
    costs = [] # 存储cost值,用于画误差图
    
    parameters = initialize_parameters_deep(layers_dims)
    
    for i in range(0, num_iterations):
        AL, caches = L_model_forward(X,parameters)
        cost = compute_cost(AL,Y)
        grads = L_model_backward(AL,Y,caches)
        parameters = update_parameters(parameters, grads, learning_rate)
        
        if i % 100 == 0:
            costs.append(cost)
            if print_cost:
                print('第',i,'次迭代,损失值为:',np.squeeze(cost))
        
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
        
    return parameters

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()

train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T 
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y
layers_dims = [12288, 20, 7, 5, 1] #  5-layer model
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 10000, print_cost = True,isPlot=True)
第 0 次迭代,损失值为: 149.587886303466
第 100 次迭代,损失值为: 141.02019170350448
第 200 次迭代,损失值为: 138.01033756270246
第 300 次迭代,损失值为: 135.0743550649089
第 400 次迭代,损失值为: 131.63094243379044
第 500 次迭代,损失值为: 126.65517519164558
第 600 次迭代,损失值为: 118.9218624170803
第 700 次迭代,损失值为: 108.63747582415544
第 800 次迭代,损失值为: 97.00884808332998
第 900 次迭代,损失值为: 85.35984280094473
第 1000 次迭代,损失值为: 77.98939336158429
第 1100 次迭代,损失值为: 63.89626285766847
第 1200 次迭代,损失值为: 56.03321945177835
第 1300 次迭代,损失值为: 49.89347238983575
第 1400 次迭代,损失值为: 43.12143020904175
第 1500 次迭代,损失值为: 37.50272367846152
第 1600 次迭代,损失值为: 33.019357861294765
第 1700 次迭代,损失值为: 29.76246319565282
第 1800 次迭代,损失值为: 26.88819693558299
第 1900 次迭代,损失值为: 23.500618346149963
第 2000 次迭代,损失值为: 17.77676886308921
第 2100 次迭代,损失值为: 12.035037605092207
第 2200 次迭代,损失值为: 9.314614720313132
第 2300 次迭代,损失值为: 7.959295098190584
第 2400 次迭代,损失值为: 7.1918465448471895
第 2500 次迭代,损失值为: 6.632036770517371
第 2600 次迭代,损失值为: 6.224417721459526
第 2700 次迭代,损失值为: 5.898508363463624
第 2800 次迭代,损失值为: 5.628067504509573
第 2900 次迭代,损失值为: 5.3928246346392115
第 3000 次迭代,损失值为: 5.189147836283093
第 3100 次迭代,损失值为: 5.005224000167565
第 3200 次迭代,损失值为: 4.835722311615988
第 3300 次迭代,损失值为: 4.679244618964965
第 3400 次迭代,损失值为: 4.532669677045894
第 3500 次迭代,损失值为: 4.394145289260063
第 3600 次迭代,损失值为: 4.264051462792458
第 3700 次迭代,损失值为: 4.138887544315454
第 3800 次迭代,损失值为: 4.024421312289524
第 3900 次迭代,损失值为: 3.903360042730605
第 4000 次迭代,损失值为: 3.8098291558724466
第 4100 次迭代,损失值为: 3.718878886524587
第 4200 次迭代,损失值为: 3.636535904263239
第 4300 次迭代,损失值为: 3.557280372881751
第 4400 次迭代,损失值为: 3.475920843587015
第 4500 次迭代,损失值为: 3.3988405814008824
第 4600 次迭代,损失值为: 3.322608694947089
第 4700 次迭代,损失值为: 3.244954658134964
第 4800 次迭代,损失值为: 3.169637264433663
第 4900 次迭代,损失值为: 3.095976508743444
第 5000 次迭代,损失值为: 3.0191097806452674
第 5100 次迭代,损失值为: 2.9412534101576866
第 5200 次迭代,损失值为: 2.8598659866604135
第 5300 次迭代,损失值为: 2.7814765827015506
第 5400 次迭代,损失值为: 2.6951855075772526
第 5500 次迭代,损失值为: 2.604544510803768
第 5600 次迭代,损失值为: 2.5151956545172403
第 5700 次迭代,损失值为: 2.414688672920691
第 5800 次迭代,损失值为: 2.3181374684094935
第 5900 次迭代,损失值为: 2.207250082934326
第 6000 次迭代,损失值为: 2.0997536801581838
第 6100 次迭代,损失值为: 1.9794842316686694
第 6200 次迭代,损失值为: 1.8618858762644255
第 6300 次迭代,损失值为: 1.7467673442605542
第 6400 次迭代,损失值为: 1.623697566722028
第 6500 次迭代,损失值为: 1.5097341421531745
第 6600 次迭代,损失值为: 1.3928024467920417
第 6700 次迭代,损失值为: 1.286175243290232
第 6800 次迭代,损失值为: 1.1889183740776796
第 6900 次迭代,损失值为: 1.098132530563238
第 7000 次迭代,损失值为: 1.013811560334137
第 7100 次迭代,损失值为: 0.9383379631740534
第 7200 次迭代,损失值为: 0.8709598010724902
第 7300 次迭代,损失值为: 0.8113678070787833
第 7400 次迭代,损失值为: 0.7588112243908175
第 7500 次迭代,损失值为: 0.7118910581265366
第 7600 次迭代,损失值为: 0.6686265754748394
第 7700 次迭代,损失值为: 0.6312912349306786
第 7800 次迭代,损失值为: 0.5964514447526089
第 7900 次迭代,损失值为: 0.5658247607307065
第 8000 次迭代,损失值为: 0.5375835454822585
第 8100 次迭代,损失值为: 0.5127122669950017
第 8200 次迭代,损失值为: 0.4890775056876425
第 8300 次迭代,损失值为: 0.4673650278935556
第 8400 次迭代,损失值为: 0.4474718596224493
第 8500 次迭代,损失值为: 0.4290772773684206
第 8600 次迭代,损失值为: 0.4119784707770971
第 8700 次迭代,损失值为: 0.3964064830030835
第 8800 次迭代,损失值为: 0.381799438013025
第 8900 次迭代,损失值为: 0.3682000749565927
第 9000 次迭代,损失值为: 0.355420272318241
第 9100 次迭代,损失值为: 0.34336852000833873
第 9200 次迭代,损失值为: 0.3320170299899383
第 9300 次迭代,损失值为: 0.32155754805551345
第 9400 次迭代,损失值为: 0.31148274397461984
第 9500 次迭代,损失值为: 0.30208058897816775
第 9600 次迭代,损失值为: 0.29320759496878224
第 9700 次迭代,损失值为: 0.2847150714587572
第 9800 次迭代,损失值为: 0.2768158791403097
第 9900 次迭代,损失值为: 0.26927250066459374

在这里插入图片描述

预测

def predict(X, y, parameters):
    """
    该函数用于预测L层神经网络的结果,当然也包含两层
    
    参数:
     X - 测试集
     y - 标签
     parameters - 训练模型的参数
    
    返回:
     p - 给定数据集X的预测
    """
    
    m = X.shape[1]
    n = len(parameters) // 2 # 神经网络的层数
    p = np.zeros((1,m))
    
    #根据参数前向传播
    probas, caches = L_model_forward(X, parameters)
    
    for i in range(0, probas.shape[1]):
        if probas[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0
    
    print("准确度为: "  + str(float(np.sum((p == y))/m)))
        
    return p

pred_train = predict(train_x, train_y, parameters) #训练集
pred_test = predict(test_x, test_y, parameters) #测试集
准确度为: 1.0
准确度为: 0.78

分析

def print_mislabeled_images(classes, X, y, p):
    """
    绘制预测和实际不同的图像。
        X - 数据集
        y - 实际的标签
        p - 预测
    """
    a = p + y
    mislabeled_indices = np.asarray(np.where(a == 1))
    plt.rcParams['figure.figsize'] = (40.0, 40.0) # set default size of plots
    num_images = len(mislabeled_indices[0])
    for i in range(num_images):
        index = mislabeled_indices[1][i]
        
        plt.subplot(2, num_images, i + 1)
        plt.imshow(X[:,index].reshape(64,64,3), interpolation='nearest')
        plt.axis('off')
        plt.title("Prediction: " + classes[int(p[0,index])].decode("utf-8") + " \n Class: " + classes[y[0,index]].decode("utf-8"))
print_mislabeled_images(classes, test_x, test_y, pred_test)

在这里插入图片描述

参考资料

https://blog.csdn.net/u013733326/article/details/79767169

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值