- 博客(6)
- 资源 (1)
- 收藏
- 关注
原创 ROS2节点简介
节点应该负责一个单一的模块化功能,每个节点可通过主题(topics)、服务(services)、动作(actions)或参数(parameters)与其他节点进行数据的发送和接受。话题是ROS途中的重要组成部分,作为节点交换消息的总线,话题是发布-订阅模型。上述的例子中,每次运行节点都要新开一个终端,当运行很多节点时,可以启动包含了ROS2节点的多个可执行文件,使用。列出所有正在运行个的节点的名称。当然,一个节点发送者可以向任意数量的主题订阅者发布消息,一个节点的订阅者也可以订阅任意数量的主题。
2024-08-19 00:15:53 673
原创 ardupliot、SITL、Gazebo联合仿真
官方:https://ardupilot.org/dev/docs/building-setup-linux.html或者安装依赖包。
2024-08-19 00:11:10 1833
原创 吴恩达编程作业——初始化、正则化、梯度校验
初始化、正则化、梯度校验首先声明本文参考https://blog.csdn.net/u013733326/article/details/79847918,通过学习自己动手实现了前文中的所有功能,自己动手实现了Xavier初始化参数,并归纳了一个思维导图,更加清晰地了解各个模块的功能及使用,对理解 多层的神经网络有很大的帮助。初始化参数import numpy as npimport matplotlib.pyplot as pltimport sklearnimport sklearn.dat
2020-07-28 16:49:03 488
原创 吴恩达编程作业——搭建多层神经网络
搭建多层神经网络首先声明本文参考https://blog.csdn.net/u013733326/article/details/79767169,通过学习自己动手实现了前文中的所有功能,并归纳了一个思维导图,更加清晰地了解各个模块的功能及使用,对理解 多层的神经网络有很大的帮助。import numpy as npimport h5pyimport matplotlib.pyplot as pltimport testCases from dnn_utils import sigmoid, s
2020-07-27 22:55:14 1146
原创 吴恩达编程作业——搭建含一个隐藏层的神经网络进行数据分析
搭建含有一个隐藏层的神经网络首先声明本文参考https://blog.csdn.net/u013733326/article/details/79702148,通过学习自己动手实现了前文中的所有功能,在此基础上实现了对于最后的“blobs”数据集的6分类,采用softmax进行多分类,希望交流学习testCases:提供了一些测试示例来评估函数的正确性,参见下载的资料或者在底部查看它的代码。planar_utils :提供了在这个任务中使用的各种有用的功能,参见下载的资料或者在底部查看它的代码。
2020-07-26 16:32:24 737
原创 Tensorflow2.0 加载和保存模型常用方法
Tensorflow2.0 加载和保存模型常用方法定义一个模型# 建立一个简单的模型model = tf.keras.models.Sequential([ keras.layers.Dense(512, activation='relu', input_shape=(784,)), keras.layers.Dense(10, activation='so...
2020-03-27 14:04:38 1873 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人