剑指offer之 矩形覆盖

题目描述

我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路

这还是斐波那契数列的变形,通过分析我们可以知道F(n) = F(n-1) + F(n-2)。覆盖方法分为两种,取决于第一步怎么放:如果第一步沿着左边竖着放转,有F(n-1)种方法,如果第一步沿着左边横着放,则第二步必须将剩下的矩形填满,该种情况下有F(n-2)种方法。

#代码

class Solution {
public:
    int rectCover(int number) {
        int C_1 = 1; 
        int C_2 = 2;
        int count_nb ;
        if (number == 0)
            return 0;
        if (number == 1)
            return C_1;
        if (number == 2)
            return C_2;
        while (number >2)
        {
            count_nb = C_1 + C_2;
            C_1 = C_2;
            C_2 = count_nb;
            number --;
        }
        return count_nb;
    }
};

其实递归也可以,但是斐波那契递归耗时600ms,循环仅需3ms,何必呢

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值