keras.metrics中的accuracy

keras.metrics有六种accuracy,其使用的场景如下:

  • accuracy

真实标签和模型预测均为标量,如真实标签为[0,1,1,0,2,0],模型输出的预测为[0,2,1,1,2,0],此时accuracy=4/6

  • categorical_accuracy

​​​​​​​真实标签为onehot标签,模型预测为向量形式。如真实标签为[[0, 0, 1], [0, 1, 0], [0, 1, 0], [1, 0, 0]],模型预测为[[0.1, 0.6, 0.3], [0.2, 0.7, 0.1], [0.3, 0.6, 0.1], [0.9, 0, 0.1]],此时keras会自动将向量形式的标签转换为标量形式,例如将上面那个真实标签转换为[2, 1, 1, 0],将模型预测转换为[1, 1, 1, 0],然后再第一种accuracy计算方法。

  • sparse_categorical_accuracy

​​​​​​​适用场景是真实标签为标量形式,模型预测为向量形式。如真实标签为[2, 1, 1, 0],模型预测为[[0.1, 0.6, 0.3], [0.2, 0.7, 0.1], [0.3, 0.6, 0.1], [0.9, 0, 0.1]]。此时keras会自动将模型预测转换为标量形式,即将模型预测转换为[1, 1, 1, 0],然后再第一种accuracy计算方法。

  • binary_accuracy

​​​​​​​适用于二分类情况。真实标签为标量,如[2, 1, 1, 0],模型预测为标量概

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值