keras.metrics有六种accuracy,其使用的场景如下:
-
accuracy
真实标签和模型预测均为标量,如真实标签为[0,1,1,0,2,0],模型输出的预测为[0,2,1,1,2,0],此时accuracy=4/6
-
categorical_accuracy
真实标签为onehot标签,模型预测为向量形式。如真实标签为[[0, 0, 1], [0, 1, 0], [0, 1, 0], [1, 0, 0]],模型预测为[[0.1, 0.6, 0.3], [0.2, 0.7, 0.1], [0.3, 0.6, 0.1], [0.9, 0, 0.1]],此时keras会自动将向量形式的标签转换为标量形式,例如将上面那个真实标签转换为[2, 1, 1, 0],将模型预测转换为[1, 1, 1, 0],然后再第一种accuracy计算方法。
-
sparse_categorical_accuracy
适用场景是真实标签为标量形式,模型预测为向量形式。如真实标签为[2, 1, 1, 0],模型预测为[[0.1, 0.6, 0.3], [0.2, 0.7, 0.1], [0.3, 0.6, 0.1], [0.9, 0, 0.1]]。此时keras会自动将模型预测转换为标量形式,即将模型预测转换为[1, 1, 1, 0],然后再第一种accuracy计算方法。
-
binary_accuracy
适用于二分类情况。真实标签为标量,如[2, 1, 1, 0],模型预测为标量概