科研
Leeyegy
人生很长,余生很短。
展开
-
科研篇(12):CVPR20 分类整理-对抗样本
文章目录一、对抗样本-附代码1.1Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance.1.2 One Man's Trash Is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples1.3 ColorFool: Semantic Adversarial Coloriz原创 2020-07-28 21:44:10 · 1692 阅读 · 0 评论 -
科研篇(11):ICLR20 分类整理-对抗样本&Meta-Learning
文章目录一、对抗样本1.1Enhancing Transformation-Based Defenses Against Adversarial Attacks with a Distribution Classifier .1.2 Implicit Bias of Gradient Descent based Adversarial Training on Separable Data1.3 Mixup Inference: Better Exploiting Mixup to Defend Advers原创 2020-05-13 13:31:40 · 1919 阅读 · 0 评论 -
科研速记(10):语义分割篇(1)-数据集准备
一、概述本篇介绍如何通过ubuntu命令行获取各个语义分割的经典数据集。二、Demo1.获取VOC 2012download:wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar解压:tar xvf VOCtrainval_11-May-2012.tar2.获取MSC...原创 2020-04-29 16:38:07 · 250 阅读 · 0 评论 -
科研速记(9):CVPR18-ADV_DEFENCE-Guided Denoiser
layout: posttitle: CVPR18-ADV_DEFENCE-Guided Denoiserdate: 2019-12-13 16:63:24.000000000 +09:00PAPER INFODefense Against Adversarial Attacks Using High-Level Representation Guided DenoiserSource...原创 2019-12-14 16:30:41 · 318 阅读 · 0 评论 -
科研速记(7):对抗样本篇-ICCV19-Sparse and Imperceivable Adversarial Attacks
一、摘要Motivation与pixel-wise 的扰动相比,高度稀疏的对抗攻击是更加危险的,因为更加不易被侦测到。因此,本文的研究中心在于最小化对抗样本与干净样本之间的l0l_0l0距离。简述本文工作intergrate additional bounds on the component-wise perturbationpixels change only in t...原创 2019-11-30 17:27:23 · 1191 阅读 · 0 评论 -
科研速记(2):ICCV19-Wavelet Domain Style Transfer for an Effective Perception-distortion Tradeoff
ZerosPaper:Wavelet Domain Style Transfer for an Effective Perception-distortion Tradeoff in Single Image Super-Resolution一、概览面向的问题贡献数据集论文实验效果复现实验效果SISR任务中的感知-失真的trade-off1.利用SWT将图分解成高...原创 2019-11-20 15:02:29 · 683 阅读 · 0 评论 -
(待续)科研速记(1):图像去噪篇ICCV19-Fully Convolutional Pixel Adaptive Image Denoiser
一、概览面向的问题贡献数据集论文实验效果复现实验效果FC-AIDE自适应图像去噪1.扩展了AIDE的框架,该框架将去噪器表达为基于上下文的像素级别的映射2.使用全卷积增强基础的监督模型3.引入正则化方法来进行自适应的微调来获得更强和更鲁棒的自适应性Set5set12BSD68Urban100Manga109SOTA二、相关工作2.1基于深度学习的去噪...原创 2019-11-20 10:50:46 · 1265 阅读 · 0 评论 -
科研篇一:NeurIPS2019 分类整理-对抗样本&Meta-Learning
文末获取paper整理资源,NIPS2019对抗样本&Meta-Learning原创 2019-09-08 16:05:28 · 6253 阅读 · 0 评论 -
(待续)论文笔记(一):ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector
文章目录5.1 Digitally Perturbed Stop Sign1.讨论了参数c的作用2.讨论了攻击实际操作3.讨论了目标攻击类别的选取4.讨论了参数c的选取5.1 Digitally Perturbed Stop Sign1.讨论了参数c的作用参数c控制了扰动的攻击力度。一般来说,如果c越大的话,生成的扰动就会相对较小,但是也不够鲁棒。为了能够取得更鲁棒的攻击效果,一般会倾向于选...原创 2019-11-04 12:43:55 · 814 阅读 · 3 评论 -
科研篇四:对抗样本20篇-ICML2019
文章目录一、对抗攻击(Adversarial Attack)1.1.Adversarial Attacks on Node Embeddings via Graph Poisoning1.2.Adversarial camera stickers: A physical camera-based attack on deep learning systems二、对抗防御2.1.Using Pre-...原创 2019-10-22 17:12:38 · 1729 阅读 · 0 评论 -
数字图像处理-第2章-数字图像基础(1)
文章目录Zero. 本章预览一、视觉感知基础1.1.人眼的构造1.2.眼睛中图像的形成1.3.视觉错觉Zero. 本章预览概览第一节.介绍人类视觉系统的重要特性第二节.介绍光第三节.讨论成像传感器(imaging sensor)第四节.介绍图像取样(sampling)和量化(quantization)第五节.讨论像素之间的基本关系第六节.介绍主要的数学工具一、视觉感知基础1...原创 2019-10-14 20:48:56 · 848 阅读 · 0 评论 -
科研篇三:Learning to Learn-元学习综述
文章目录一、写作动机与文献来源二、摘要一、写作动机与文献来源paper:本文的基础支撑资料来自UCB2018年一名博士的毕业论文:Learning to Learn with Gradients写作动机:元学习入门二、摘要人类在仅仅通过很小的例子来学习新的概念并且快速应用在之间没有见过的情况下的能力很强大。为了做到这一点,他们在自己的先验知识上,为适应能力做准备,将之前的观察和少...原创 2019-10-10 23:06:04 · 1494 阅读 · 0 评论 -
科研篇二:对抗样本(Adversarial Example)综述
文章目录一、写作动机与文献来源二、术语定义2.1.对抗样本/图片(Adversarial Example/Image)2.2.对抗干扰(Adversarial perturbation)2.3.对抗训练(Adversarial Training)2.4.对抗方(Adversary)2.5.黑盒攻击(Black-box attacks)2.6.探测器(Detector)2.7. 愚弄率(Foolin...原创 2019-10-10 22:28:11 · 7344 阅读 · 1 评论 -
机器学习、计算机视觉神犇/大牛主页
原文链接:http://www.cnblogs.com/zhanjxcom/p/4151855.html ...转载 2019-10-06 21:40:44 · 1153 阅读 · 1 评论